CREATING AN NGSS© EARTH-SPACE SCIENCE HIGH SCHOOL CURRICULUM
How NGSS addresses High School Earth & Space Science Differently

Science and Engineering Practices – SEPs
- Moving away from the classic model of a “Scientific Method”
- Integration of Engineering
- Emphasis on Models, Mathematics, and Communication

Disciplinary Core Ideas – DCIs
- K-8: Fundamentals of Earth & Space science are being learned
- Coming into high school, students know more but misconceptions are pervasive and are best eliminated through accountable guided inquiry

Crosscutting Concepts – CCs
- 7 ideas knitting together sciences and engineering fields
- Increase in complexity as students age and develop
- Creating a common language
Challenges with Implementing NGSS

- The NGSS is daunting in both organization and depth and breadth
- Finding the connections with what has been done in the classroom and the changes that need to be made
- Making the NGSS work in different settings
 - Time, Materials, and Technology
 - Linking NGSS to State Standards and District Curriculum
 - Lack of Administrative Understanding
 - Potential curricular constraints by School Board
My Scope & Sequence

School district has a defined curriculum to which the NGSS DCIs have to be aligned

Autumn Semester

- Processes that influence Earth’s Interior and Exterior
 - ESS1.5-6
 - ESS2.1, 2, 3, 5
 - ESS3.1

- Processes that Impact Life (Resources)
 - ESS2.6-7
 - ESS3.1-6*

Spring Semester

- Processes that influence the Earth’s Climate
 - ESS2.2, 4-7
 - ESS3.3-6*

- Processes that influence the Universe
 - ESS1.1-4

*Integration of Engineering
My Approach...

- Scissors, Sticky Notes, and String
 - Cut apart the DCIs, CCs and SEPs
 - Organize them into categories
 - Make webs for each unit of study aligning NGSS to District Curriculum

- RESEARCH
 - Books & Articles
 - Videos
 - Peer Collaboration
Earth Science SEPs

Already Doing
- Asking Questions
- Using Models
- Planning & Carrying out Investigations
- Analyzing & Interpreting data
- Using Mathematics & Computational Thinking
- Constructing Explanations
- Obtaining, evaluating and communicating information

Needed to Integrate
Most of these are the “Engineering” Practices
- Defining Problems
- Developing Models
- Designing Solutions
- Engaging in Argument from Evidence
Defining Problems

- Natural Disaster Earth Systems Science Analysis
- Locating a Research Station in Yellowstone National Park
- Global Tectonic Hazards: How do literacy & poverty affect survival rates in natural disasters (Feedbacks)
- Fires, Flooding, & Water Quality
- Global Climate Summit
- Establishing a Mars Colony
Earthquake

Earthquake-Secondary Hazards

Shaking Hazards of Mount Pelaez

How Ready are We?

- HAZARDS!
 - Potential Volcanic Hazards: eruptions of gas & pyroclastic eruptions, lahars, landslides
 - Potential Secondary Earthquake Hazards- tsunamis, landslides, liquefaction, floods, fire, and building collapse

- Emergency Services include a hospital, fire station, police station, and relief services for emergencies.
- Update building codes
- Educate about earthquake & volcano preparedness and survival
- Have a plan
Developing & Using Models

- Topographic Map Making & Analysis
- Creating Computer Simulations using NetLogo or Google SketchUp
- Using Computer Simulations such as PhET & EarthObserver
- Physical Models: Topography, Fault-Blocks, Stream Tables, and Groundwater
- Mathematical Models using Excel & Plot.ly
Re-thinking the Stream Table Lab

- Students read about recent flooding events
- Identify the factors that contributed to the flooding
- Investigate possible solutions using the stream table
 - Develop a research plan
 - Test variables, collect data, and analyze results
 - Develop & Test possible solutions
 - Present best solution & evaluate the solutions designed by other student groups
Designing Solutions to Real Problems

- Representing Topography
- Designing Bridges and Buildings to survive Earthquakes
- Locating a research station in Yellowstone National Park
- Modeling the impacts of Fires, Flooding, & Water Quality – Stream Table
- Water Filtration Project
- Developing Energy Technologies
- Establishing a Mars Colony
Filtering Water

- Collaborative Problem-Solving
- Real-world emphasis on engineering
- Local speakers readily available
- Integration of chemistry and biology
- Cost/Benefit Analysis
- Comparison of natural and designed solutions
Engaging in Argument from Evidence

- Natural Disaster Earth Systems Science Analysis
- Analyzing & defending graphed data
- Designing Bridges & Buildings to survive Earthquakes
- Locating a research station in Yellowstone National Park
- Modeling the impacts of Fires, Flooding, & Water Quality – Stream Table/Water Filtration Project
- Global Climate Summit
- Developing Energy Technologies
- Establishing a Mars Colony (cross-curricular with Language Arts)
Yellowstone Research Station

- Problem-based Learning
- Collaborative
- Limited time
- Data-driven using files in Google-Earth
- Geothermal Features
- Volcanic History
- Ground Deformation
- Seismicity
In Conclusion...

- Get to know all the components of the NGSS
 - Science and Engineering Practices
 - Disciplinary Core Ideas
 - Cross-cutting Concepts

- Identify the strengths and weaknesses of existing curriculum and reach out to others for help

- Use NGSS to strengthen weaknesses and fill in gaps

- Integrate Problem-Based Learning and Technology

- Take risks and try new activities and projects
 - Messy, loud, and “controlled chaos”
 - Invigorating and fun
References Cited

Climate Literacy & Energy Awareness Network. 2014.

Institute for Global Environmental Strategies. 2014. *Earth System Science Education Alliance*

IEEE. 2014. *Filtration Investigation. www.tryengineering.org*

Model Diagram. Danski14 (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

USGS Earthquake Hazards Program.

USGS Volcano Hazards Program Observatories and Centers.