PETROLOGY AND GEOCHEMISTRY OF THE LATE PALEOZOIC VOLCANIC ROCKS IN THE WEST TIANSHAN, XINJIANG, NW CHINA

Yongfeng Zhu
Peking University, Beijing, China
E-mail: yfzhu@pku.edu.cn
Blueschist and coesite eclogite found along the Nikulaev-Nalati Fault, suggesting deep subduction of south Tianshan oceanic crust (Zhang LF et al. 2002, 2005, 2013)
Representative geological sections for late Paleozoic volcanic-sedimentary rocks
These late Paleozoic volcanic-sedimentary rocks were covered by late Carboniferous conglomerate and sandstone in both north and south Tianshan.
Comparisons for geological records

South Tianshan:
volcanic rocks accompany ophiolitic melanges, sedimentary, and metamorphic rocks (eclogite & blueschist)

North Tianshan:
volcanic rocks accompany ophiolitic melanges, sedimentary, and metamorphic rocks (greenschist)
Volcanic rocks in North Tianshan with U-Pb ages of 389 - 313Ma are similar to volcanic rocks in south Tianshan (383 - 316Ma)
Zircons separated from basaltic andesite in Tekesdaban

363.1 ±3.5Ma
MSWD = 1.3
Rhyolite in Laerdundaban
316 ±2.5 Ma
Towards eastern part, andesite, rhyolite, tuff and volcanoclastic rocks are the major components of the volcano-sedimentary sequences, basaltic rocks are rare. The time span of volcanic rocks is quite large (76Ma: from 389Ma to 313Ma) based on zircon U-Pb data. Magmatic activity in western part was earlier (Devonian – early Carboniferous) than that in eastern part (mainly late Carboniferous).
These late Paleozoic volcanic rocks are composed of rhyolite, trachyte, dacite, andesite, trachy-andesite, basalt, and tuff. Felsic rocks (>70%) are widely cropped out, basaltic rocks occur locally (mostly in western part).
Volcanic rocks on north of Yili terrane (n = 157)

Volcanic rocks on south of Yili terrane (n = 130)

basaltic rocks with SiO$_2$ < 55% & LOI < 3.5%, Nb/Ta > 12
(on north of Yili terrane, n = 18)

basaltic rocks with SiO$_2$ < 55% & LOI < 3.5%, Nb/Ta > 12
(on south of Yili terrane, n = 20)
Clinopyroxene phenocryst shows chemical zoning. Its core contains relatively high Ti, Cr, V, and Zr. Clinopyroxene rim shows increase of Sr and REE.
Clinopyroxene phenocryst as the most early mineral phase crystallized in magma chamber, its REE pattern could represent the geochemical natures of primary magma.

Calculated melt coexisting with Cpx KD based on Donnelly et al (2004)
Calculated melts based on partial melting (1-5%) of garnet pyroxenite.

Partial melting (2%-3%) of enriched peridotite could estimate the Devonian–early Carboniferous basaltic rocks. However, partial melting (3%-5%) of mantle rocks could NOT match the late Carboniferous basaltic rocks.
AFC model could explain Devonian basaltic rocks with high initial Sr isotopic ratios and negative epsilon Nd values, while Carboniferous basaltic rocks do not involved in assimilation of continental crust, suggesting major contributions of depleted mantle in magma sources.
Both the melting materials and the melting depths controlled geochemistry of arc magmatic rocks.
Figure 10. Three-stage tectonic model. (A) Southward subduction of the North Tian Shan Ocean beneath the Yili terrane, producing arc magmatism in northern margin of the Yili terrane. (B) Collision between the Yili and Junggar terranes and formation of the North Tian Shan accretionary complex. (C) Emplacement of the Sikeshu pluton into the accretionary complex and development of a composite magmatic belt in northern margin of the Yili terrane (see text for details).

An and Zhu 2013

Fig. 13. Modeled tectonic evolution diagram of North Tianshan Orogenic belt in Paleozoic.
for south Tianshan

Long LL, Gao J, Klemd, 2011

CHARVET J, SHU LS, LAURENT-CHARVET S., 2011

Xia B, Zhang LF. 2014 Lithos
Volcanic rocks in north and south Tianshan represent two arcs of Junggar and south Tianshan Oceans, respectively.

Tectonics shifted from continental arc (western part, Devonian to early Carboniferous) to post-collisional setting (eastern part: late Carboniferous).
For eastern part

South

Tarim South Tianshan Ocean Yili Terrane

North

a

390Ma - 360Ma
(Zhou DW et al, 2004)

Geological records for subduction of North Tianshan oceanic crust during 360-320Ma are still missing

b

~320Ma

c

320-310Ma
(Zhu et al, 2009)

Magma chamber and intrusive body
Volcanic-sedimentary rocks
Oceanic floor
Thanks for your attention

Financial support from NSFC (Grant No. 41121062,41372062)