FURTHER Re-Os ARSENOPYRITE GEOCHRONOLOGY FROM SELECTED MEGUMA AU DEPOSITS, MEGUMA TERRANE, NOVA SCOTIA: POSSIBLE EVIDENCE FOR A PROTRACTED GOLD-FORMING SYSTEM

Lin Chen
Robert A Creaser
Daniel J Kontak
Oct 29th, 2014
Background and Geological Setting

- Accreted to the Avalon Terrane along the Cobequid-Chedabucto Fault, Acadian
- Meta-sediment hosted orogenic gold deposits
- Cambro-Ordovician turbidites of the Goldenville Group and Halifax Group
- Acadian (ca. 410-400 Ma) greenschist to amphibolite facies metamorphism
- Late Devonian granitoid bodies and minor mafic plutons (ca. 380-370 Ma)
- Type: concordant, discordant, disseminated; Model: pre-, syn-, late-folding
- Vein-hosted gold mineralization (Qtz-Carb-Sulfide assemblage)

Geology of southern NS showing distribution of some Meguma gold deposits
Previous Geochronology

- $^{39}\text{Ar} - ^{40}\text{Ar}$ slate / siltstone whole rock age of 400 - 410 Ma constrains the regional metamorphic age, prior to granitoid intrusions between 370 - 380 Ma (Ar-Ar, U-Pb, Rb-Sr), Ar-Ar vein minerals 370-380 Ma (Kontak 1990, 1993)

- Re-Os date the paragenetic associated sulfide minerals to obtain the age of the gold mineralization. Two Re-Os arsenopyrite ages from two gold deposits are 380 ± 3 Ma (Dufferin) and 407 ± 4 Ma (The Ovens) indicate multi-stage gold district, but Touquoy zone, Moose River: 457 ± 110 Ma, MSWD = 27, disseminated Aspy from wall rock (Morelli et al. 2005)
This Study – Beaver Dam and Moose River

- The Re-Os age of auriferous arsenopyrite at deposits
- Beaver Dam deposit and Moose River deposit
- Ar-Ar whole rock age 380-385 Ma, Mica age 370-380 Ma (Kontak 1990, 1993)
- The U-Pb age of local granite at Beaver Dam deposit (River Lake intrusion) (371 Ma (ms) and 378 Ma (bt); Kontak et al. 1990)
Sample Collection & Preparation

Aspy sampled from drill core (Halifax) and granite from River Lake intrusion

1) Thin Section & Re Tests; 5 Aspy samples, 3 from BD, 2 from MR
2) Aspy crystal is subdivided to separates, analyze independently (need variation in Re-Os values), hand picked/mineral separation
3) Gold in the Aspy crystals

LC-12-01, Moose River, RL image (50x)

SEM images, Moose River deposit
Methods – Re-Os and U-Pb

Re-Os Chemical processing:
Arsenopyrite analyzed by Carius tube dissolution methods

Re-Os Mass spectrometry:
Negative thermal ionization mass spectrometry (NTIMS)

U-Pb in situ analysis:
For granites, zircons were handpicked and analyzed by LA-MC-ICP-MS.
Re-Os Results – Beaver Dam Deposit

- Vein sample LC-12-16 provided an isochron age of 461.3 ± 2.9 Ma, $(n=12)$, MSWD=1.3
Re-Os Results – Beaver Dam Deposit

- Vein sample LC-12-15
- High MSWD=18 (n=8), possible complex ages?
Re-Os Results – Beaver Dam Deposit

- Vein sample LC-12-15: two data groups in Re-Os plot: isochron ages 446±13 Ma, MSWD=0.66 (n=5) and 456.0±2.8 Ma, MSWD=0.90 (n=3)
- Multiple growth stages
Re-Os Results – Beaver Dam Deposit

- Vein sample LC-12-17 provided an isochron age of \(464 \pm 26 \) Ma. (n=6)
- Uncertainty due to the low concentration of Re and Os

![Diagram showing Re-Os isochron plot with data-point error ellipses and age and initial Os/Os values]
SEM Results for Arsenopyrite- Beaver Dam Deposit

- LC-12-15
- Overgrowth rim
- Age 446±13 Ma; 456.0±2.8 Ma
• Vein Aspy sample **LC-12-02** provides a complex isochron.
• Diagrams compare LC-12-02 vein Aspy and Morelli et al. disseminated Aspy from the Touquoy Deposit.
Data of the vein sample LC-12-02 appear to define two groups in Re-Os plot: isochron ages of 437.6 ± 8.2 Ma and 380.3 ± 4.0 Ma.

Thus, Aspy in the Moose River deposit appears to have more than one age.
Vein sample **LC-12-01** from the Moose River deposit: Aspy indicates Re-Os model ages from **400 to 440 Ma**;

- The Aspy from the Moose River/Touquoy deposit are not homogeneous.
SEM Results of Arsenopyrite- Moose River

- The major element concentration are variable, zoning under low contrast
SEM - LA-ICP-MS Results
Moose River Deposit

- SEM - small inclusions in the core with clear overgrowth;
- Trace element mapping shows Mo, Sb, Ni, Au with different stages for elements (e.g., Au two stages);
- Multiple growth of Aspy.

Trace element mapping of the Aspy from the Touquoy, Moose River deposit
River Lake Intrusion: U-Pb Zircon Dating

CL images of zircon with ages

Granite LC-12-05

Granite LC-12-06
River Lake Intrusion: U-Pb Zircon Dating

- Granite zircon U-Pb ages:
 - Sample LC-12-05: 381.6 ± 2.5 Ma
 - Sample LC-12-06: 380.6 ± 2.0 Ma

- Data compare to U-Pb TIMS zircon ages of 378 ± 1 Ma for the Musquodoboit (Kontak et al. 2004) and 380 ± 1 for the South Mountain (Kontak et al. 2003) batholiths in the Meguma terrane.
Conclusions I

- **The Beaver Dam deposit:**
 - Re-Os arsenopyrite ages of
 - LC-12-16: 461.3 ± 2.9 Ma
 - LC-12-15: 456.0±2.8 Ma / 446±13 Ma
 - LC-12-17: 464 ± 26 Ma
 - **Much** older than for Dufferin (380 Ma) and The Ovens (407 Ma) deposits

- Possible multiple growth: 456.0±2.8 Ma / 446±13 Ma, SEM
- No similar ages known in the Meguma terrane - what happened in the Meguma terrane before 410 Ma?
- U-Pb zircon ages of rhyolite from the Avalon Terrane - 460 Ma, 454Ma (Murphy, Hamilton, 2003, 2011)

- The new Re-Os results indicates tectonothermal events **prior to Acadian deformation**;

- The **onset of some gold mineralization** in Meguma is **pre-Acadian.**
Conclusions II

• The Moose River deposit:
 • Complex Re-Os ages, ca. 380 Ma and ca. 437 Ma; 400-440 Ma, Model age

• Multi-stage sulfide growth:
 • SEM, major and trace element evidence;
 • Multiple ages - formed in Early Silurian, influenced by later metamorphism and hydrothermal events.

• 437.6 ± 8.2 Ma: pre-Acadian arsenopyrite formation, might also be related to the Beaver Dam deposit: LC-12-15 double ages, regional event
• U-Pb zircon age of a felsic tuff of 438 +3/-2 Ma in the Meguma terrane (White Rock Fm) (MacDonald et al., 2002).

• ca. 400 Ma-410 Ma: regional metamorphism
• ca. 380.3 ± 4.0 Ma: granite intrusion

• Granite U-Pb zircon age: 381.6 ± 2.5 Ma; 380.6 ± 2.0 Ma
• ~Conforms to the 380 Ma magmatic activity in the Meguma terrane
Thanks!

Questions?

Acknowledgments:
Laser-ablation ICP-MS laboratory at Laurentian University
The Radiogenic Isotope Facility at the University of Alberta
Scanning Electron Microscope Lab at the University of Alberta
Canadian Centre for Isotopic Microanalysis at the University of Alberta
Acadian Mining, provided the access to the drill core, Nova Scotia