

T98. ENVIRONMENTAL AND ENGINEERING GEOLOGY STUDENT RESEARCH COMPETITION

Seawater Intrusion Effect on Radioactive Strontium Mobility

Seeun Chang HyunJu Kim Wooyong Um

Nuclear Engineering Lab. (NEL) Division of Advanced Nuclear Engineering (DANE) POSTECH

2014. 10. 20

Contents

- 01. Background
- 02. Research Approach
- **03. Materials and Method**
- 04. Results
- **05.** Conclusion

- Pure β -emitter, $T_{1/2} = 28.8$ y
- ⁹⁰ Sr migration is controlled by sorption reactions (i.e., ion-exchange).
- In general, ⁹⁰Sr sorbs on clay / Fe-oxides / other minerals
 → via weakly bound outer-sphere surface complexes
- Degree of sorption
 - : depends on factors (e.g. pH / I.S./ solid phase composition/ surface area)

Dan Hawkes, U.S. Department of Energy, 2013

J. P. Mckinley, et. al., 2007

2. Salinization and ⁹⁰Sr leak scenarios at a NPP site

<Objectives>

- To determine K_d and R depending on different ionic strength degrees in solution
- To model quantitatively the amount of sorption affinity of ⁹⁰Sr as a function of the corresponding activities in solution
- To compare the exchange convention for describing the data set

3.1. Materials

- Study area : Shin-Gori 3-4 reactor site in Koera
- Solid samples : core rock (shattered zone), GL(-) 6.6 7.4 m

< Mineral composition, % >			
Quartz	22.20		
Albite	39.00		
Orthoclase	19.00		
Muscovite	6.00		
Biotite	3.00		
Chlorite	6.00		
Actinolite	4.80		
Total	100.00		

Cation exchange capacity

	Solution	samp	les
--	----------	------	-----

Methods	Fraction size	CEC [µeq/g]
NH ₄ -OA _c (pH 7)	0.5 – 1 mm	23.11
1 M of NaNO ₃ / KNO ₃ (pH 7)	< 2 mm	24.21

	рН	I.S. [M]
GW	7.70	0.005
SW	8.08	0.770

3.2. Batch & Column exp.

<Batch adsorption>

- < 1 mm size solid, adsorbent (0.5 g/ 10 mL)</p>
- ⁹⁰Sr 10 Bq/mL, reaction time 10 d
- Experimental procedure
 initial concentration : ⁹⁰Sr 10 Bq/mL

<Column>

- 0.5 1 mm fractionated solid
- Stable Sr (ICP-OES analysis)
- Injected Br / Sr: 10071 and 0.175 mg/L
- Column set-up condition

No.	Type fluids	I.S. [M]	Porosity (θ)	Bulk density [g/cm ³]	Pore vol. [cm ³]	Flow rate [mL/min]
1	GW	0.005	0.42	1.43	11.73	
2	GW+SW (50 : 50)	0.388	0.40	1.55	11.00	0.03
3	SW	0.770	0.41	1.49	11.33	

3.3. Binary ion-exchange exp.

- 75 150 µm fractionated solid (non pretreated)
- Reaction time: 12 h (0.5 g /10 mL)
- Initial pH of solutions: pH 7
- Chemical reagent: NaNO₃, KNO₃, Ca(NO₃)₂·4H₂O, and Mg(NO₃)₂·6H₂O

• Experimental procedure

- Selectivity coefficient, K_{selectivity}
 - indicate the adsorption affinity to the solid materials
 - : dependence on pH, I.S., sorbent heterogeneity, specific adsorption, or variation of the activity of the adsorbed species
 - Mole fraction

 $x_{Sr} = q_{Sr} / (qSr + qM)$

Equivalent fraction

 $y_{Sr} = q_{Sr} / (2qSr + qA)$ $y_{Sr} = q_{Sr} / (2qSr + 2qB)$

M: competing cation (Na⁺, K⁺, Ca²⁺, Mg²⁺) A: monovalent cation (Na⁺, K⁺) B: divalent cation (Ca²⁺, Mg²⁺) q: amount of bound cations a: activities in solution SrX, AX and BX: exchanger phase with -1 charge SrY, AY and BY: exchanger phase with -2 charge

$$SrX_2 + 2A^+ = A_2X_2 + Sr^2^+$$

V(surface site) = -1'

 $SrX_2 + B^{2^+} = BX_2 + Sr^{2^+}$

<hetero-exchange> <homo-exchange>

$$K_{Vanselow} = \frac{a_{sr} x^2 A}{a^2 A x_{sr}} \text{ or } = \frac{a_{sr} x B}{a B x S r}$$
$$K_{Gaines _Thomas} = \frac{a_{sr} y^2 A}{a^2 A y_{sr}} \text{ or } = \frac{a_{sr} y B}{a B y_{sr}}$$

• Y(surface site) = `-2` $SrY + 2A^+ = A_2Y + Sr^2^+$ <hetero-exchange> $SrX_2 + B^{2^+} = By + Sr^{2^+}$ <homo-exchange>

$$K_{Cernik} = \frac{a_{Sr}yA}{a^2A y_{Sr}}$$
 or $= \frac{a_{Sr}yB}{aB y_{Sr}}$

3.4. Salinity effect on exchangeable Sr

- 75 150 µm fractionated solid (non pretreated)
- original GW and SW
- 0.5 g / 10 mL⁻¹
- Reaction time: 1, 4, 12 h and 1, 3, 7, 14, 30 d
- Solution types

Name	GW : SW [%]	I.S. [M]	рН	Sr [mg/L]
SET 1	100 : 0	0.01	7.81	0.23
SET 2	70 : 30	0.24	7.90	2.09
SET 3	50 : 50	0.39	8.00	3.33
SET 4	30 : 70	0.54	8.01	4.65
SET 5	0 : 100	0.77	8.10	6.50

10

4.1. Batch & Column experimental Results

<Results of batch adsorption>

•	Sorption	distribution	coefficient	(\mathbf{K}_d)	of	⁹⁰ Sr
---	----------	--------------	-------------	------------------	----	------------------

No.	Fluid type	I.S. [M]	рН	<i>K_d</i> [mL/g]
1	GW	0.005	7.81	39.0
2	GW+SW (50 : 50)	0.388	8.00	26.2
3	SW	0.770	8.10	13.4

<Results of column – Br tracer>

Dispersion coefficient (D) from CXTFIT equilibrium model fit

No.	Fluid type	I.S. [M]	R	D [cm²/min]
1	GW	0.005	1	0.01
2	GW+SW (50 : 50)	0.389	1	0.01
3	SW	0.770	1	0.02

<Results of Sr transport>

4.2. Binary ion-exchange exp.

• Sr_{Solid} - Na⁺

log I.S. [M]	log Sr _{extracted} [M]	log K _{G-T}
-3.6	-7.87	3.59
-2.7	-7.38	2.65
0.2	-6.16	1.60

Sr_{Solid} - K⁺

log I.S. [M]	log Sr _{extracted} [M]	log <i>К</i> _{G-т}
-4.7	-7.66	3.89
-3.3	-6.86	3.08
-0.3	-6.42	0.13

■ Sr_{Solid} – Ca²⁺

log I.S. [M]	log Sr _{extracted} [M]	К _{G-T}
-4.7	-7.87	1.00
-2.7	-6.37	0.99
0.2	-6.59	0.84

log I.S. [M]	log Sr _{extracted} [M]	log <i>К</i> _{G-T}
-4.1	-7.68	0.99
-2.1	-6.09	0.97
0.9	-6.86	0.52

<hetero-exchange isotherm>

Sr_{Solid} - Na⁺

log I.S. [M]	log Sr _{extracted} [M]	log K _{Vanselow}	log К _{G-T}	log K _{Cernik}
-3.6	-7.87	3.89	3.59	3.58
-2.7	-7.38	2.95	2.65	2.64
0.2	-6.16	1.90	1.60	1.60

Sr_{solid} - K⁺

log I.S. [M]	log Sr _{extracted} [M]	log K _{Vanselow}	log К _{G-T}	log <i>K</i> _{Cernik}
-4.7	-7.66	4.19	3.89	3.89
-3.3	-6.86	3.38	3.08	3.08
-0.3	-6.42	0.43	0.13	0.13

<homo-exchange isotherm>

■ Sr_{Solid} – Ca2+

log I.S. [M]	log Sr _{extracted} [M]	Kvanselow	К _{G-T}	K Cernik
-4.7	-7.87	1.00	1.00	1.00
-2.7	-6.37	0.99	0.99	0.99
0.2	-6.59	0.84	0.84	0.84

Sr_{Solid} – Mg2⁺

log I.S. [M]	log Sr _{extracted} [M]	K _{Vanselow}	К _{G-T}	K _{Cernik}
-4.1	-7.68	0.99	0.99	0.99
-2.1	-6.09	0.97	0.97	0.97
0.9	-6.86	0.52	0.52	0.52

4.3. Salinity effect on exchangeable Sr

Sr removal efficiencies	Name	GW : SW [%]	I.S. [M]	Sr _{initial} [mg/L]	Sr _{after reaction} [mg/L]	Max. Sr _{solution} removal [%]
in solution	SET 1	100 : 0	0.01	0.23	0.14	39.5
	SET 2	70 : 30	0.24	2.08	1.91	8.18
	SET 3	50 : 50	0.39	3.33	3.06	8.11
	SET 4	30 : 70	0.54	4.65	4.02	13.7
	SET 5	0 : 100	0.77	6.49	5.52	15.0
50 40 8		•	 <set 1=""> GW:</set> <set 2=""> GW:</set> <set 3=""> GW:</set> <set 4=""> GW:</set> <set 5=""> GW:</set> 	5W = 100:0 5W = 70:30 5W = 50:50 5W = 30:70 5W = 0:100		
20 20 20						
10		•		•		
0 6	12	18	24	30	1	
R	eaction ti	ime [d]				

4.3. Salinity effect by kinetic reaction

 Sr removal efficiencies in solution

Name	GW : SW [%]	I.S. [M]	Sr _{solution} removal [%]
SET 1	100 : 0	0.01	39.5
SET 2	70 : 30	0.24	8.18
SET 3	50 : 50	0.39	8.11
SET 4	30 : 70	0.54	13.7
SET 5	0 : 100	0.77	15.0

→ Precipitation as 'Strontianite' $Sr^{2+} + HCO^{3-} \rightarrow SrCO_3(s) \downarrow + H^+$ (log Q/K = 1.3010 s/sat)

5. Conclusions

- Sr sorption distribution coefficient (K_d) decreased by increasing I.S.
 - : Sr sorption affinity in groundwater decreased with the seawater intrusion
- The mobility of Sr decreased in groundwater column

 higher Sr sorption affinity in groundwater condition than seawater
 due to low amounts of competing cations.
- Sr-Na exchange showed linear isotherm
 Sr ion-exchange reaction affected by divalent cations at low I.S. condition, however, Na⁺ ion should be more affected factor at high I.S. condition.
- Vanselow and Gains-Thomas conventions well described Sr hetero-exchange reaction, while Gains-Thomas showed better homo-exchange isotherm under low I.S. condition.
- Strontianite precipitation occurs at high concentration of Sr in seawater solution.

<Future study> The additional model parameters have to be optimized to improve the model fit and to handle the variability of $K_{selectivity}$ for Sr transport model.

Acknowledgement

This research work was supported by World Class University (WCU) (R31-30005) Program and is supporting by Basic research support project (4.0010363.01) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology. The authors also acknowledge the KEPCO/ENC and Dong-A consulting company for the sample collection.

Thanks for your attention!

Seeun Chang

Nuclear Engineering Lab. (NEL) Division of Advanced Nuclear Engineering (DANE) POSTECH

2014. 10. 20