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Abstract: Methods:

Topographic indices for quantifying tectonic tilt are used to determine the extent and cause of To determine the direction of tilt occurring in the Teton Range, we applied the ArcGIS ‘Contour,” ‘Basin,” and ‘Stream Order’ spatial analyst
possible range tilting of the Teton Mountain Range, WY and ID. The Teton Range 1s a young, tools to 10-m USGS Digital Elevation Models (DEM’s). All data were projected into Universal Transverse Mercator (UTM) coordinates for more
asymmetric range on the eastern edge of the Basin and Range and the southern edge of the thermally | |accurate analysis. To perform this series of steps, model builder was used in ArcGIS for a more efficient work flow (Figure 2a). The transverse
uplifted Yellowstone region. The thermal uplift, attributed to the Yellowstone hot spot, has caused topographic symmetry factor (TTS) was then calculated using the equation Ds/Dm (Figure 2b). Ds represents the distance from the midpoint of
regional tilt north of the Yellowstone area, and it may also cause regional tilt south of Yellowstone. the drainage basin to the stream, and Dm represents the distance from the midpoint of the drainage basin to the ridge. Calculations of the TTS
The Teton Range 1s ideally situated to test this hypothesis. To determine the magnitude and direction | |were completed on all tributaries, excluding first order streams based on the Strahler method. Transects were drawn at approximately
of possible tilt we analyzed the transverse topographic symmetry (TTS) in 25 major basins within 100-m intervals in ArcGIS using 20-m contours to define the starting and ending points. The start and endpoints of these transects have an equal
the Teton Range (13 on the western side and 12 on the east). The basins and their major streams were| [elevation allowing the midpoint of each transect to be used as the midpoint of the drainage basin for each tributary. XY coordinates of start and
identified using ArcGIS basin and stream order algorithms to 10 m USGS Digital Elevation Models endpoints, midpoints, and stream-transect intersections were calculated in ArcGIS using ‘calculate geometry’ tools. Distances to find Ds and Dm
(DEMs). The algorithms defined the basins based on drainage divides; the stream analysis defined were calculated using the XY coordinates in Microsoft Office Excel (Figure 2¢). The calculated TTS gives a value of the magnitude of the vector
water flow through the basins. The TTS equals Ds/Dm where Ds is the distance from the midpoint of |  [within a range from 0 to 1 with 0 meaning that the stream has not migrated at all from the midpoint and 1 implying that the stream has migrated
the basin to the midpoint of the stream meander and Dm is the distance from the ridge to the basin to the edge of the basin. Trigonometric functions applied on the drawn transects find the azimuth of the line and the direction in which the stream
midpoint. Dm was determined by drawing transects, with equal elevation start and end points, from has moved from the midpoint. Vectors were then created at each stream-transect intersection of each drainage basin (Figure 3d). Inverse distance
ridge to ridge. The TTS 1s evaluated for each transect and a vector 1s used to visualize the magnitude | [weighting was applied to better visualize and predict direction of tilt throughout the entire range (Figures 3-6).
and direction of TTS for each transect. TTS was determined at approximately 100 m intervals in the
primary E-W trending basins. If tilting of a basin has occurred, the stream will show a general
pattern of down-tilt migration. Thermal uplift of the Yellowstone hotspot, if it influences tilt of the
Tetons, will cause a general north-south, down-tilt trend. Understanding tectonic tilt in the Teton =
Range and evaluating the influence of the Yellowstone hotspot on it will help determine, temporally i
and spatially, past interactions between passage of the hotspot and Basin and Range faulting.

Figure 2a. GIS Model

A model was built in ArcGIS to perform a series of tasks for all 25 major drainage basins. A new DEM was inserted at the beginning of the model to gain the necessary feature
classes for processing data.
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| P 1 e Figure 3. Inverse Distance Weighting using First Order Polynomial Analysis Figure 4. Inverse Distance Weighting using Second Order Polynomial Analysis Figure S. Inverse Distance Weighting using Third Order Polynomial Analysis Figure 6. North versus South Tilt Directions
Strahler Stream Orde Figure 2b. Using Excel Spreadsheets This representation of tilt data is a first order polynomial analysis using inverse distance weighting of the transect data The default second order polynomial su.ggests f.urther'variation in the tilt expressed in the Teto? Range than d'id the first To further analyze the data, a third order polynomial analysis suggests more areas that tilt both to the east and the west. In an effort to show the dramatic difference in the tilt seen in the Teton Range, tilt has been categorized to only be north
| . with a minimum 10 nearest neighbors. The representation suggests that no northward tilt occurs in the Teton Range in order. The small arI.lOUTlt of northward tilt remains eclipsed by the large amount of southvx.fard tilt. .Areas that tilt bOt}} WffSt Some isolated areas suggest greater northward tilt, however those areas remain small when compared to the general or south facing. By separating the tilt into these two directions the regional southern trend becomes clearly visible. The
i - XY coordinates of transect start and endpoints, measureable quantities. This result led to the further use of statistical tools to determine if using higher order and east are larger in size and more connected than some of the more isolated areas seen in the third order polynomial tilt southward trend seen across the entire mountain range. widespread regional tilt to the south corroborates the hypothesis that the Yellowstone hotspot is the cause of regional
3 midpoints, and stream-transect intersections were polynomials would give to different results (Figures 2 & 3). map (Figure 3). movement.
4 calculated in ArcGIS and exported into Microsoft
5 Excel. Ds and Dm values were calculated in Excel
B s along with the azimuth of the transect and the
| K direction in which the stream has migrated using
Vectors trigonometric functions.
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e The data derived from the first second, and third order polynomial inverse distance weighting equations corroborates the hypothesis that the Yellowstone Hotspot 1s the

Figure 2c. Vectors e The data were collected using the ESRI ArcGis software and the analysis performed could not have been done without the software.
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\Rfen dezvous Mt primary source of the tilt found within the Teton Mountain Range.
P

Vectors were created at stream-transect e The help of Dr. Grant Willis, head of the geologic mapping program for the Utah Geological Survey, proved invaluable in determining the areas of future research 1n the

intersections by using the data calculated in excel e The southern tilt is expressed throughout the entire mountain range, and is not based around the hinge point of the Teton Fault.

N Teton Range and 1n the interpretation of data found while doing field work.

with the vector pointing in the direction in which

the stream 1s moving and the size of the arrows

based upon the calculated TTS value. The most
Montana north-eastern basin contains an anomaly found :
bl g o . T Future Research: References:
'\\(‘_,W.(\ nowhere else 1n the entire mountain range. 1his . . . . ‘ . . ‘ Cox, R.T., 1994, Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment: Geological Society of America Bulletin, v. 106, p. 571, doi: 10.1130/0016-
D basin contains a stream capture that cut across the e This research allows for further investigation in the Teton Range of a stream capture in the north-eastern most basin. The further research of this stream capture may lead to 7606(1994)106<0571:AODBSA>2.3.CO;2.
Wyoming dljamla)'ge. dl;].ld.ed' Foi ell{StreaI;l Zaptfe to fcut aC;OSS new information Tegafdlﬂg PaleOtOPngath in the area. Edward A. Keller, and Nicholas Pinter Active Tetonics: earthquakes, uplifts, and landscape: Brigham Young University - Idaho, Prentice Hall, 2002, 49-155 p.

the Dbasin divide a lake needed to have tormed. ) ) . . . . . . . . .
Field work performed earlier this year found e To further support the hypothesis that uplift described in the Tetons is regional rather than local, analysis could be performed in the neighboring Gros Ventre Mountain England, P., and Molnar, P., 1990, Surface uplift, uplift of rocks, and exhumation of rocks: Geology, v. 18, p. 1173—1177, doi: 10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO;2.
previously undocumented lake depOSitS in the area. Range to determine 1f the same results could be pI’OdllCGd. Foster, D., Brocklehurst, S.H., and Gawthorpe, R.L., 2010, Glacial-topographic interactions in the Teton Range, Wyoming: Journal of Geophysical Research: Earth Surface, v. 115, p. F01007, doi: 10.1029/2008JF001135.
These deposits provide evidence for the presence e The raster data could be converted to vector data to allow for the geometric analysis of the area above and below the streams to be done. If the converted data suggests that Foster, D., Brocklehurst, S.H., and Gawthorpe, R.L., 2008, Small valley glaciers and the effectiveness of the glacial buzzsaw in the northern Basin and Range, USA: Geomorphology, v. 102, p. 624-639, doi: 10.1016/j.geomorph.2008.06.009.
of a long lived lake. Upon further review of the : . : : :

i L Studv A area a mappe d landslide or a glacial moraine could the area above the streams 1s larger than the area beneath them, it corroborates the hypOthCSIS that southward tilt dominates the area. Summer Jasmine Brown, 2010, Integrating apatite (U-Th)/He and fission track dating for a comprehensive thermochronological analysis: refining the uplift history of the Teton Range [Thesis]: Virginia Polytechnic Institute and State University, 94 p.

igure 1. Study Area . . : : : : L :

have been the cause of the lake formation. Further Figure 2d. Transverse Topographic Symmetry Factor e Analysis of the Teton fault could determine how the Teton fault affects the mountain range, and the relationship with the Yellowstone hotspot. The analysis of the fault Tom Cox, R., Van Arsdale, R.B., and Harris, J.B., 2001, Identification of possible Quaternary deformation in the northeastern Mississippi Embayment using quantitative geomorphic analysis of drainage-basin asymmetry: Geological Society of America Bulletin,

Data was collected and analyzed across the entire Teton Mountain Range which sits on the border of Idaho and . : : : : . : : : : : : 2 _ : :

. _ . y 8 . . . research into the Quaternary geology of the area 1s This technique allows for a quick method of accurate basin analysis. This method could also explam the reasons Why ]arge sections of the Tetons tilt towards the west or east respectlvely. v. 113, p. 615, doi: 10.1130/0016-7606(2001)113<0615:10PQDI>2.0.CO;2.
Wyoming. It is located just south of the Yellowstone hotspot and west of the Teton fault which makes this range an 1deal : . : : ; . e . . .
) . p 1 frecional tilt usi d [vsi needed to determine the actual cause of the lake utilizes the natural topography to measure the distance that a stream migrates from the e The tectonic tilt mappine could be useful in understandin Qua ternary mass wastine scenarios in the parts of the Ranee prone to these events Ward, D.J., Anderson, R.S., and Haeussler, P.J., 2012, Scaling the Teflon Peaks: Rock type and the generation of extreme relief in the glaciated western Alaska Range: Journal of Geophysical Research: Earth Surface, v. 117, p. F01031, doi:
ocation to test for possible causes of regional tilt using stream order analysis. and the unusual drainage patterns. center of a basin. The amount and direction of shift of the stream from basin center PpIng & Y g P s¢P ' 10.1025/2011JF002068.
provides information about the tilt effecting the area.




