Modeling Flow Regimes for a cyclical wetland using Groundwater Temperatures in McLean County, IL

> Eileen L. Maxwell Master Candidate: Hydrogeology

OUTLINE

INTRODUCTION

- Temperature
- Factors influencing groundwater temperatures
- STUDY AREA

• METHODS

- Field Collection
- Modeling

• RESULTS

- SURFER
 - Water table contours
 - Isotherms
- CONCLUSION

INTRODUCTION

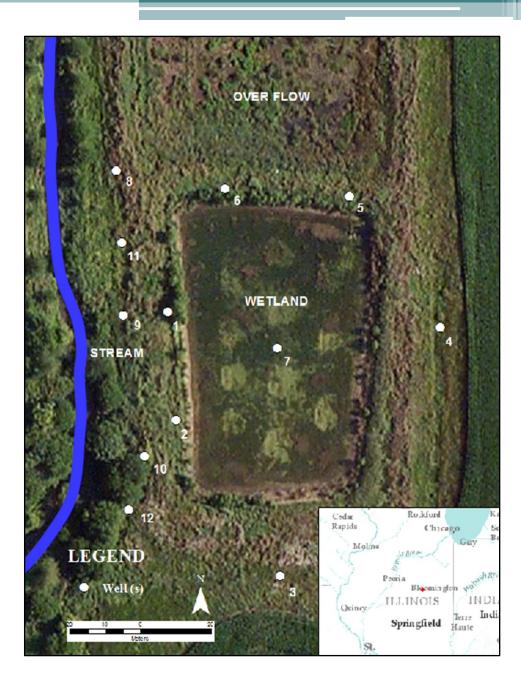
- Using groundwater temperatures has increased in the last decade (Musgrave and Binley, 2010).
- Temperature has the highest potential to explain the complex groundwater characteristics and model groundwater flow (Anderson, 2005; Conant, 2004).
- Heat is transported in the subsurface by conduction and convection via groundwater flow.

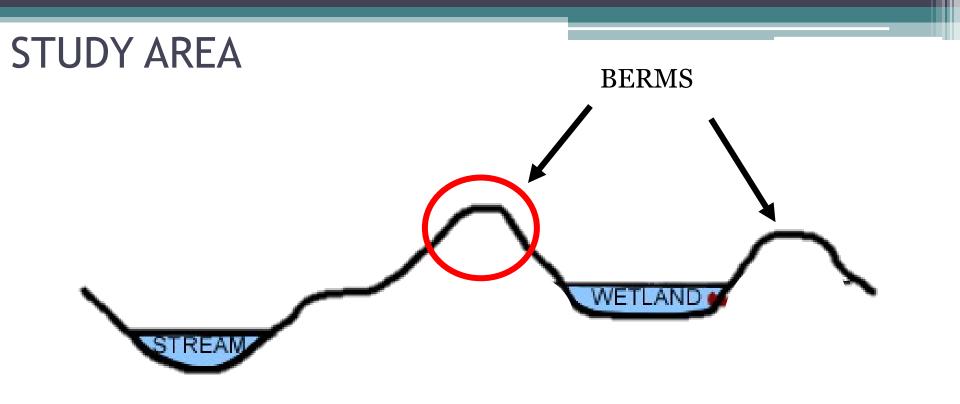
INTRODUCTION

- When considering the use of groundwater temperatures:
 - Influences on heat (Constantz, 1998)
 - Air Temperature
 - Precipitation

Solar Radiation

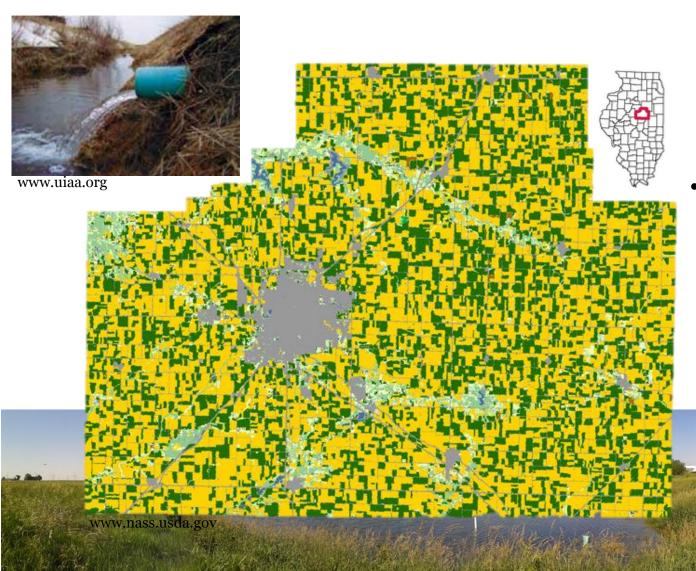
• Water Inflow




Mavensphotoblog.com

STUDY AREA

- 12 observation wells
- Stream along the west
- Overflow to north
- Dimensions of Durbin wetland are:
 - ~250 feet by 150
 feet with depth of
 6.64 feet
 - Volume: 249,000 cubic feet.



On the west bank of wetland there is a significantly pronounced berm where well 1 and well 2 reside.

Illinois non-point source (NPS)

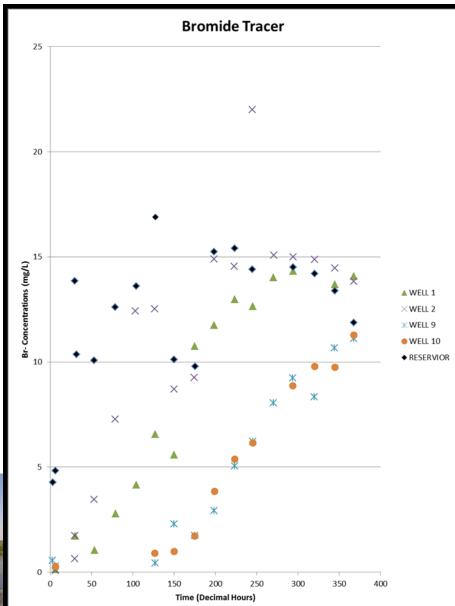
- The reservoir was
 built to sub-irrigate
 during drought and
 treat nutrient
 contamination into
 surrounding surface
 water.
- Groundwater flow
 controls the amount
 of nitrate that moves
 into a system
 (Denver et. al,
 2014).

04/01/2014 WET CONDITIONS

09/22/2013 DRY CONDITIONS

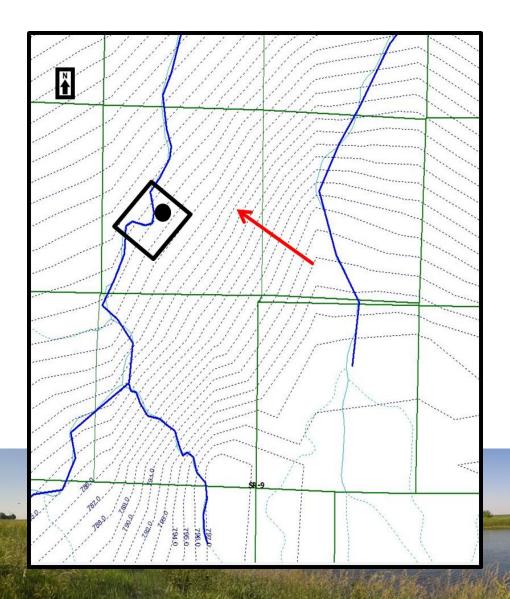
• How do dry conditions and wet conditions for a wetland influence the thermal regime of a local groundwater system?

METHODS- Field Collection


- Hydraulic head and temperature were measured in the field from 9/12/2013 to 10/8/2014.
- Water temperature (°C) was measured using a YSI-85 salinityconductivity meter.
- Head values were measured with a water level meter and adjusted to surveyed elevations.
- Bromide tracer test was conducted by mixing 48 kg of sodium bromide into the wetland.
- Samples from the wetland, wells, and stream, were collected over 16 days.

RESULTS- Tracer Test

- Tracer tests indicates wetland waters infiltrate into subsurface and travel towards the stream.
- Concentrations of bromide were seen in the down gradient wells after three days of the initial start of test.
- Conducted on 5/13/2013 to 5/29/2013



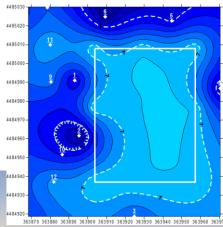
MEHTODS- Modeling

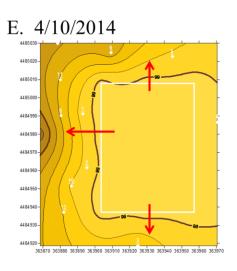
- GFLOW was used to verify the regional groundwater flow.
- Kriging method was used to interpolate the water table (hydraulic head) and the thermal gradient within the study area.

RESULTS- GFLOW

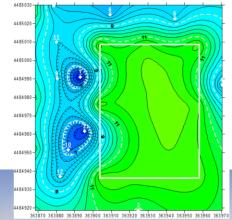
- Regional groundwater model using GFLOW.
- Regional groundwater flow is from southeast to northwest.
- Site location is a black dot.
- Red arrow represents flow direction.
- Open square is the boundary for model.

Water table and temperature during dry conditions

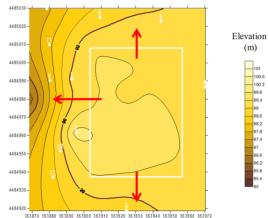



970 363880 363890 363900 363910 363920 363920 363940 363950

Water table and temperature during wet conditions

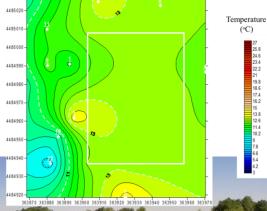


d. 4/1/2014



e. 4/10/2014

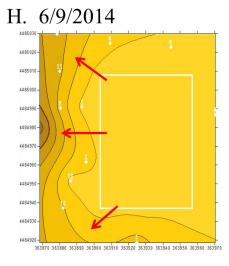
F. 5/16/2014

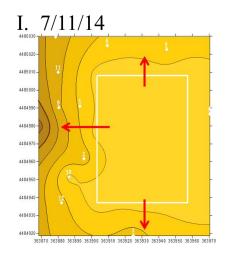


(m)

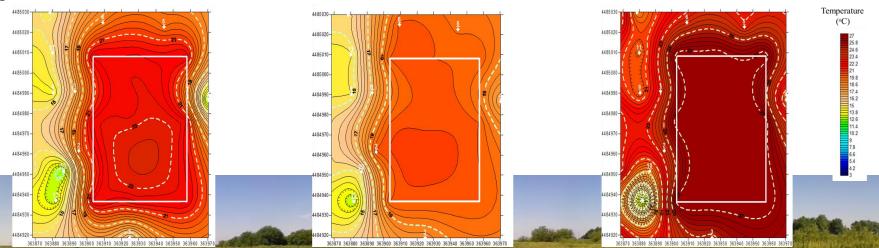

97.4

96.6 96.2 95.8


f. 5/16/2014


Water table and temperature during wet conditions

g. 6/5/2014


h. 6/9/2014

Elevation

(m)

i. 7/11/2014

CONCLUSION

- The wetland serves as a groundwater recharge.
- The western berm serves as a source of thermal energy.

ACKNOWLEDGEMENTS

- The Nature Conservancy
- Graduate School at Illinois State University
 Normal, Illinois
 - Research Grant
- Geography- Geology Department at Illinois
 State University Normal, Illinois
 - Dr. Eric Peterson
- On to the Future- Geological Society of America

REFERENCE

Anderson, M.P., 2005, Heat as a Ground Water Tracer: Ground Water, v.43, no. 6, p. 951-968,

doi10.1111/j.1745-6584.2005.00052.x.

Constantz, J. and Stonestrom, D.A., 2003, Chapter 1 Heat as a Tool for Studying the Movement of Ground

Water Near Streams in Stonestrom, D.A., and Constantz, J., eds., Heat as a tool for studying the movement of ground water near streams, Volume US Geological Survey Circular1260: Denver, CO, U.S. Geological Survey, p/1-6.

Constantz, J., 1998, Interaction between stream temperature, streamflow, and groundwater

exchanges in alpine streams; Water Resources Research, v.34, no.7, p.1609-1615, doi:98WR00998.

Conant Jr. B. 2004, Delineating and Quantifying Ground Water Discharge Zones Using

Streambed Temperatures: Ground Water, v.42, no. 2, p. 243-257.

Denver, J.M., Altor, S.W., Lang, M.W., Fisher, T.R., Gustafson, A.B., Fox, R., Clune, J.W., and McCarty, G.W., 2014,

Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States; Journal of Soil and Water Conservation, v. 69, no.1, p.1-16, doi:10.2489/jswc.69.1.1.

Gleeson, T., K. novakowski, P. Cook, and T. Kyser. 2009. Constraining groundwater discharge in a large watershed: Integrated isotropic, hydraulic, and thermal data from the Canadian shield; Water Resources Research, v. 45, no.

W08402; 1-16, doi:10.1029/2008WR007622.

Musgrave, H. and Binley, A., 2011, Revealing the temporal dynamics of subsurface temperature in a wetland using time-lapse geophysics; Journal of Hydrology, v.396, p.258-266, doi:10.1016/j.jhydrol.2010.11.008.

THANK YOU

