Profiling stable isotopes of water signatures to define mass transport mechanisms from water capped fluid tailings in the oil sands industry

Kathryn Dompierre & Lee Barbour Department of Civil and Geological Engineering, University of Saskatchewan

INTRODUCTION: END PIT LAKES

Oil sands mine closure landscape

- Establish lake ecosystem
- Provide treatment for mine waters
- Store oil sands tailings

BACKGROUND: FLUID FINE TAILINGS

Oil sands ore composition (by weight)

- 10% bitumen, 5% water, 85% minerals
- Fluid fine tailings
 - Disperse particles (clay)
 - Low settlement rates
 - High water content
 - Relatively warm

BACKGROUND: SITE DESCRIPTION

Mildred Lake Mine

Operator: Syncrude Canada Ltd.

Base Mine Lake

- Filled: 1994-2012
- 186 M m³ FFT
- Water cap: ~8.5 m

BACKGROUND: MASS TRANSPORT

Diffusion

Molecular mass transfer over concentration gradient

Tailings vs. freshwater

Advection

Mass carried by fluid flow

Tailings settlement causes upward pore water flux

Chemical mass transfer

- Addition/removal of mass
 - Reactions in tailings

FIELD INVESTIGATION

Isotope cataloguing, May 2013 – ongoing

Interface sampling program, July 2014

- Fixed interval fluid sampler
 - 3 m sample zone (centered at mudline)
 - 10 cm sample interval
 - 3 locations (S04, S13, S15)

Sample analysis

- Picarro L-2120-i Cavity Ring Down Spectrometer
 - Vapour equilibration technique

FIELD RESULTS: ISOTOPE TRENDS

FIELD RESULTS: ISOTOPE TRENDS

FIELD RESULTS: S15

FIELD RESULTS: S13

FIELD RESULTS: S04

MODEL DEVELOPMENT

Mass transport

- Diffusion and advection
 - GeoStudio© (CTRAN/W + SEEP/W)
- ID model: vertical tailings profile
- Boundary and initial conditions
 - Established using field measurements

Parameters:	Values:
Saturated water content	0.85
Diffusion coefficient	10.8 x 10 ⁻⁵ m/day (1.25 x 10 ⁻⁹ m/s)
Dispersivity	0.09

MODEL 1: FIXED CONCENTRATION

 $\delta^{18}O = -13.8\%$

Top boundary condition

Constant concentration based on sample results

 $\delta D = -118.0 \%_0$

- Initial FFT concentration
 - Average signature in tailings (near interface) $\delta D = -112.2 \%_0$ $\delta^{18}O = -12.4 \%_0$

MODEL 2: LAKE MIXING

Top boundary condition

- Assume lake water fully mixed
- Linearly decreasing concentration

Initial FFT concentration

Same as Model 1

 $δD = -112.2 \%_0$ $δ^{18}O = -12.4 \%_0$

MODEL 3: LAKE DIFFUSION

- Top boundary condition
 - Water column with constant mass
 - Assumes no mixing
 - Initial water concentration based on FIS $\delta D = -118 \%_0$ $\delta^{18}O = -13.8 \%_0$
- Initial FFT concentration
 Same as Models 1 and 2 δD = -112.5 ‰ δ¹⁸O = -12.5 ‰

NUMERICAL RESULTS: DEUTERIUM

NUMERICAL RESULTS: OXYGEN 18

Field data

STABLE ISOTOPE INSIGHT

Initial profiles show:

- Water cap still 'process affected water'
- Differential effects of fresh water inflow
- Advective transport dominant when 'break' at interface

GeoStudio© models:

- Potential advective mass transport (0.003 m/day)
- Corresponds with tailings settlement models

CONCLUSIONS

Isotope trends provide insight on mass transport
 e.g. If 'break' at interface persists: advection dominant

Simple model created in GeoStudio©
 Observe effects of varying boundary conditions

- Potential applications:
 - Assess mass loading to End Pit Lakes
 - Corroborate existing tailings settlement models

ACKNOWLEDGEMENTS

College of Engineering

QUESTIONS

