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On the Hunt for High-Level Groundwater: Tutuila, American Samoa Gt
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Figure 5: Dissolved radon concentrations from springs and from selected
surface water samples for comparison. Radon concentrations in groundwater
are generally an order-of-magnitude higher than those found in surface wa-
ter or precipitation.
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Figure 13: Upper reach of the
eastern fork of Malaeimi stream.

calibration of a steady-state MODFLOW model. With-
in the Malaeimi watershed, flux out to drains was routed
back into the model via mountain front recharge at the
applicable cells. Once calibrated, the model was used to
run hypothetical water development scenarios to calcu- J

late sustainable yields for each unit. Two hypothetical FEESEETEESEN - £ N
well-cells were placed at -3 to -50 MSL depth, in the out-  Figure 4 Radon grab samples were taken with a gas tight
er caldera unit and the inner caldera unit (Figs. 6 & 7). cvasion. samples were analyzed on a RAD H20 radon gas

Conclusions:
1) Development of high-level groundwater in Tutuila’s outer-caldera unit will re-

piezometer and hand-pump to minimize dissolved gas
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detector the same day as collection. Figure 7: Modeled groundwater head elevations in meters above MSL. Model was calibrated with 7 springs and 2 observation wells. Also shown are sult in hlgher productlon Yleld and lower head drawdown than water deVGlOP'
locations of two hypothetical pumping wells. ment in the inner—caldera unit.
Figure 9a. Figure 9b.
= 00 | S, wel region East-well, inner cal- Modeled  East- : . 1 1 1
1050 i deraragianofmod. well pumping at 2) Natural hydrologic features can be useful in developing and calibrating models
i 14.9 m? - d7, the . . . .
oy g ocee max sustainable  [Acknowledgements: Many thanks i that may serve as tools for future water resources exploration in volcanic island
180.0 pump rate (MSR) Joe Fackrell for assistance and guidance terrains

175.0 Whole model grid for the i.nner cal- with all parts of this project. Also fa’fa-
170.0 size is 28 X 28 m by dera unit. In the tai tele lava to Pacific RISA, the UH Wa-

by 165.0 - 5 layers. Bottom of | outer caldera ter Resources Research Center, Ameri-
P 55 - : 160.0 |ayer 5 truncated at unit MSR = 69.9 lcan Samoa Power Authoritv and those ReferenceS:
.. D G R % (58, 155 0 40x starting head m? - d, per well- ‘A S . thYt de th 1. Eyre, (1989). USGS Water-Resources Investigations Report: 94-4142 2. Izuka, et. al.(2007). USGS Scientific Investigations Report: 2007-5167
: : : ; : \ “ - ' at American Samoa at made this « o .
Figure 10: Offline production well. Static water levels Figure 11: Pig at wellnead. Direct evidence of threats to 00 = et g cell unit. work possible 3.Walker & Eyre, (1995). “J. of Volcanology & Geothermal Res. 69.3 241-254 4. Wong, (1995). USGS Water-Resources Investigations Report: 95-4185

were used for model calibration. groundwater sustainability (despite being a friendly pig).




