Calculating Errors of Interpolation Methods for Bathymetric Surveys
A Geographic Information Systems (GIS) Approach

Crystal K. Williams
Catherine O’Reilly
Eric W. Peterson
Rick Twain

Geological Society of America, Annual Meeting 2014, Vancouver, BC
Introduction

• Globally high water demand
 - Drinking water
 - Irrigation in agriculture
 - Power generation

• Reservoirs used to meet this demand

• Reservoir lifetime is limited
Sediment accumulation

• Sediment decreases storage capacity and shortens reservoir lifetime
• Evaluation of reservoir sedimentation is important
• Imperative to manage surface water resources
Bathymetric Maps

• Map of the bottom of the lake
• Typically generated using point data
 Location (GPS) & Depth (elevation)
• Surface created by interpolation
Interpolation Methods

- Inverse Distance Weighting (IDW)
- Kriging
- Natural Neighbor
- Spline
Objectives

• Compare point data with different densities
• Explore error associated with different methods of interpolation
Study Area: Central Illinois
2014 Equipment: HydroLite-TM set up

- RTK-GPS
- SonarMite BT echo sounder
- SonarMite transducer
- Trimble GeoExplorer GeoXT
Methods

• Data collected and put into a GIS (ArcMap)
 Hanson Engineers Inc. 1999 – low density
 Collect current data 2014 – high density

• Designate 10% as observation sites by random selection

• Run the interpolation methods available in ArcMap
 Interpolations create a continuous surface (raster grid)
Methods continued

• Created model in ArcGIS to run multiple iterations

 Calculate RMS at observation points for each method of interpolation’s raster surface

 Change the mathematical parameters until lowest RMS achieved

• Create final surface with the complete data set

• Ultimately, contrast 1999 and 2014 surfaces to estimate sediment accumulation
Point Designations

1999 Low Density Data

2014 High Density Data
Results:
Low Density- Lowest RMS for Interpolation Methods

<table>
<thead>
<tr>
<th>Interpolation Method</th>
<th>RMS (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDW</td>
<td>4.9</td>
</tr>
<tr>
<td>Kriging</td>
<td>4.9</td>
</tr>
<tr>
<td>Natural Neighbor</td>
<td>3.6</td>
</tr>
<tr>
<td>Spline</td>
<td>3.6</td>
</tr>
<tr>
<td>Spline Boundary</td>
<td>3.7</td>
</tr>
<tr>
<td>Topo to Raster</td>
<td>3.7</td>
</tr>
<tr>
<td>Trend</td>
<td>9.2</td>
</tr>
</tbody>
</table>
High Density - Lowest RMS for Interpolation Methods

Interpolation Method

- IDW: 1.4
- Kriging: 1.4
- Natural Neighbor: 1.2
- Spline: 1.2
- Spline Boundary: 1.2
- Topo to Raster: 1.3
- Trend: 9.5

RMS (ft)
Conclusion

• Bathymetrics can be very inaccurate
• Spline & Natural Neighbor, interpolation methods with lowest RMS error
• Will use these surfaces to calculate volume of sediment accumulation
• Higher point density can lower RMS errors dramatically (60%)
Acknowledgements

John Kostelnick
Dave Malone
The City of Bloomington
ISU Department of Biology
Tom Rodgers
Matthew Dondanville
Troy Olson
Scott Joyce, Mike Steffa, Jill Mayes, and other Water Treatment Plant Staff
Matt Meyers
Brian Grebliunas
ISU Graduate School
GSA: North Central Section
Thank you

Questions?