Calculating Errors of Interpolation Methods for Bathymetric Surveys

A Geographic Information Systems (GIS) Approach

Crystal K. Williams Catherine O'Reilly Eric W. Peterson Rick Twait

Geological Society of America, Annual Meeting 2014, Vancouver, BC

Introduction

- Globally high water demand
 - Drinking water
 - Irrigation in agriculture
 - Power generation
- Reservoirs used to meet this demand
- Reservoir lifetime is limited

Sediment accumulation

- Sediment decreases storage capacity and shortens reservoir lifetime
- Evaluation of reservoir sedimentation is important
- Imperative to manage surface water resources

Bathymetric Maps

- Map of the bottom of the lake
- Typically generated using point data Location (GPS) & Depth (elevation)
- Surface created by interpolation

Interpolation Methods

Inverse Distance Weighting (IDW)

Natural Neighbor

Kriging

Spline

Objectives

- Compare point data with different densities
- Explore **error** associated with different methods of interpolation

Study Area: Central Illinois

2014 Equipment: HydroLite-TM set up

RTK-GPS

SonarMite BT echo sounder

SonarMite transducer

Trimble GeoExplorer GeoXT

Methods

Data collected and put into a GIS (ArcMap)

Hanson Engineers Inc. 1999 – low density

Collect current data 2014 – high density

- Designate 10% as observation sites by random selection
- Run the <u>interpolation</u> methods available in ArcMap

Interpolations create a continuous surface (raster grid)

Methods continued

- Created model in ArcGIS to run multiple iterations
 - Calculate RMS at observation points for each method of interpolation's raster surface
 - Change the mathematical parameters until lowest RMS achieved
- Create final surface with the complete data set
- Ultimately, contrast 1999 and 2014 surfaces to estimate sediment accumulation

Point Designations

1999 Low Density Data

2014 High Density Data

Results:

Low Density- Lowest RMS for Interpolation Methods

High Density - Lowest RMS for Interpolation Methods

Surface 1999

Conclusion

- Bathymetrics can be very inaccurate
- Spline & Natural Neighbor, interpolation methods with lowest RMS error
- Will use these surfaces to calculate volume of sediment accumulation
- Higher point density can lower RMS errors dramatically (60%)

Acknowledgements

John Kostelnick

Dave Malone

The City of Bloomington

ISU Department of Biology

Tom Rodgers

Matthew Dondanville

Troy Olson

Scott Joyce, Mike Steffa, Jill Mayes, and other Water Treatment Plant Staff

Matt Meyers

Brian Grebliunas

ISU Graduate School

GSA: North Central Section

