Modeling of bedrock channel and cave evolution using computational fluid dynamics

Matija Perne, Matthew D. Covington, Joseph Myre
Department of Geosciences, University of Arkansas

2014 GSA Annual Meeting in Vancouver, British Columbia

NSF EAR 1226903
Overview

- Introduction
- Existing literature on bedrock channel cross-section modeling
- Limits of cross-section models
 - Example of sediment influence
- 3D computational fluid dynamics (CFD) modeling
- Results
Motivation
Motivation
Numerical modeling of bedrock channel cross-sections

Numerical modeling of bedrock channel cross-sections
Sediment behavior

- Erosion is caused by sediment
- Local boundary shear stress is not the only variable influencing erosion rates along the boundary
Influence of sediment

- Tools effect: bedrock is abraded by bed load
- Cover effect: bed load protects bedrock from erosion
- Erosion is fastest when 1/2 surface is covered
Influence of sediment
Stability

- In stable cross-sections, bigger local bank slope means smaller erosion rate.
- If erosion rate maximum does not occur at the lowest point, the cross-section is unstable.
Stability

- In stable cross-sections, bigger local bank slope means smaller erosion rate.
- If erosion rate maximum does not occur at the lowest point, the cross-section is unstable.
Stability
Beyond steady-state assumption

- Cross-section (and slope) stays constant through time
- Cross-section (and slope) stays constant along the channel
Computational Fluid Dynamics (CFD)

- Using numerical methods to calculate fluid flow
- In our context: calculating fluid flow using some efficient universal software package developed by someone else (instead of crude methods we are able to implement)
Lattice-Boltzmann Method

- Used in our group to look at turbulent flow structures over soluble bedforms
- Joe Myre, 345-12, Wednesday 4:05pm
OpenFOAM

- Open source CFD package
 - calculates flow through a 3D channel segment
 - calculates shear stress on the wall
OpenFOAM results
OpenFOAM results
OpenFOAM results