
Figure 2. Paleo-ice flow 
patterns Laurentide ice sheet,
Foothills Erratics Train’ and
location of Del Bonita upland
unglaciated area surrounded
by terminal moraine.
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ORIGIN OF THE ICE-FREE CORRIDOR CONCEPT AS AN 
EXPLANATION FOR INITIAL PEOPLING OF THE AMERICAS

The discovery of the Folsom and Clovis sites in 1927and 
1932 respectively provided indisputable evidence of the co-
existence of humans with extinct ‘ice age’ fauna. The 
question immediately arose as to how these hunters had 
reached the mid-latitudes of North America at a time when 
the northern half of the continent was apparently buried 
beneath the Laurentide and Cordilleran ice sheets.  In 1933, 
W.A. Johnston (GSC) proposed that people could have 
reached the lands south of the ice via a passage between 
the montane and continental glaciers at the climax of the 
last glacial maximum (LGM). In 1935, Ernst Antevs coined 
the term 'ice-free corridor'.  Testing of the existence of an 
ice-free corridor at the  LGM was not completely settled 
until the advent of cosmogenic exposure dating of the 
Foothills Erratics Train (Fig. 1; Jackson et al. 1997). This in 
turn begged the question: “was to whether this coalesence 
was one of many coast-to-coast glaciations or a single 
unique event”.  This question is now resolved based upon 
applications of advances in glacial sedimentology, AMS 
14C dating and paleomagnetic investigation of glacial 
sediments (Jackson, Andriashek and Phillips, 2011).

 ICE-FREE CORRIDORS ARE STILL  
OPTIONS FOR EARLY OVERLAND 

ENTRY OF HUMANS INTO THE 
AMERICA--- BUT DURING ITS 

CLOSING, NOT OPENING

Archaeological sites clearly predating 
the Clovis culture such as Paisley Cave 
in North America and Monte Verde in 
South America apparently predate the 
opening of a post-LGM ice-free corridor 
in the coast-to-coast ice covering 
Canada at the time. This has bolstered 
the idea that humans entered the 
Americas along the Pacific Coast.

However, older and, to some, 
controversial sites such as Meadowcroft 
(Adovasio and Peder, 2013), Cactus Hill 
(McAvoy and McAvoy,1997) and clusters 
of sites in the mid-west summarized by 
Holen and Holen (2013) (Fig. 6) support 
the presence of humans south of the ice 
sheets during the the LGM or earlier 
during the mid-Wisconsin (OIS 3). 
Humans occupation north of the Arctic 
Circle in western Beringia is now well 
established (Pitulko et al., 2013). 
Lifeways capable of allowing humans to 
flourish in the most rigourous periglacial 
conditions had been achieved by that 
time. Westward radiation of these people 
to eastern Beringia would have brought 
them into one or both of the ice-free 
corridors (Fig. 6) and the Americas to the 
south. If and when there is a consensus 
that humans were in the Americas prior 
to the LGM, ice- free corridors predating 
the coalesence of Cordilleran and 
Laurentide ice and indeed, the interior 
plateaux and valley systems of the 
Canadian Cordillera are viable overland 
routes of entry into the Americas 
(Jackson and Duk-Rodkin, 1996). Such 
passages may have existed until ca. 
23,000 years ago or even later based 
upon the youngest pre-LGM ice-free 14C 
ages from the Interior Plains and the 
Cordillera. 
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Figure 4. Western limits of pre-OIS 2 glacial ice and stratigraphy along the Oldman River
( from Jackson et al. 2011).
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ABSTRACT
There is extensive and robust stratigraphic and 
geomorphic evidence of progressive enlargement of North 
American (NA) continental ice sheets in a westerly direction 
during the glaciations of Quaternary Period. This 
culminated with a one-time coalescence of the Laurentide 
Ice sheet and valley glaciers from the Rocky and Mackenzie 
mountains and outlet glaciers from the Cordilleran Ice 
Sheet during marine isotope stage (MIS) 2. This singular 
coast-to-coast ice (CCI) event ended the pattern of broad 
ice-free corridors between Cordilleran and continental 
glaciers that was the norm during all previous Quaternary 
glacial maxima in North America. Recent discoveries of 
human settlements above the Arctic Circle in eastern 
Siberia during MIS 3 (~30 C14 ky BP) and an accumulation 
of archaeological sites in NA south of the limit of glaciation 
dating to MIS 3 (specifically <30 C14 ky BP to ~22 C14 ky 
BP) or contemporaneous with the CCI event during MIS 2 
(specifically ~22 C14 ky BP to ~14 C14 ky BP) suggest that 
the limiting event for initial overland human migration into 
the Americas was the closing of the ice-free corridor rather 
than its opening as has been the orthodoxy. 
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36 Cl ages erratics on moraine surrounding Del Bonita

Sample     Zero erosion 1.1 mm/kyr 3.3 mm/kyr
                 Age   ±      Age  ±     Age      ±

JJO01419 15500 630 14800 580 13840     510
JJO01420 14040 510 13430 460 12530     410
JJO01421 19600 780 18240 680 16550       580
JJO01423 11500 420 10990 380 10250     340
JJO01425 22100 800 20600 700 18700     600
JJO01429 21050 670 19660 590 18100     520
JJO01433 20800 780 20750 770 20800     780
JJO01435 30300 1160  28350  1030   26300     930

COAST-TO-COAST ICE WAS UNIQUE TO THE LAST GLACIAL 
MAXIMUM. THE EVIDENCE IS SUMMARIZED IN FIGS. 2-5. PRIOR 

TO THE LGM, ICE-FREE CORRIDORS BETWEEN THE 
CORDILLERAN GLACIERS AND CANADIAN SHIELD CENTERED 

ICE SHEETS  WERE THE NORM.

PART 3--A PRE-LGM ICE-FREE CORRIDOR A VIABLE OPTION FOR OVERLAND ENTRY INTO 
THE AMERICAS

The Paleoamerican Odyssey conference in Santa Fe, New Mexico in October, 2013 marked the passing of the 
Clovis-first paradigm.  At present, there is a consensus that we really don’t know when and how people arrived in 
the Americas. What we do know is that people were present in the Americas when what is now Canada and the 
adjacent parts of the USA were covered by coast-to-coast glacial ice. Some controversial sites suggest the 
presence of humans prior to the closing of the last ice-free corridor. The duration of this glacial cover was short: 
between ca. 22 and ca. 14 ky. This was the culmination of westward expansion of ice sheets during the late Neogene 
glaciations (Barendregt and Duk-Rodkin, 2004).  Subsequent work has shown that the western margins of 
continental ice sheets first reached Saskatchewan and eastern Alberta during a glaciation(s) prior to the last 
magnetic reversal (~0.78 Ma) (Barendregt et al. 2012; Barendregt and Enkin, 2012;   Barendregt et al in press). What 
is notable is that throughout the Pleistocene, there was always unglaciated land connecting the Arctic with the 
interior of North America.

PART 1-- INTRODUCTION

PART 2. EVIDENCE FOR ONE  
COAST-TO-COAST GLACIATION 
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Figure 6.  A speculative distribution of open land and glacial ice ca. 25 ka BP. Ice-free corridors open for habitation and entry into the Americas 
are indicated. Sites with yellow dots indicate approximate synchroneity with the opening of the post LGM ice-free corridor. Those indicated by
red indicate synchroneity with coast-to-coast glacial cover or pre- LGM ice-free corridors (after
Jackson and Duk-Rodkin, 1996).

(from Jackson et al. 2011).
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