EXPERIMENTAL STUDY OF FIRE BEHAVIOR DURING PRESCRIBED FIRES IN NEW JERSEY

Albert Simeoni, Eric Mueller, Nicholas Skowronski, Kenneth Clark, Robert Kremens, Michael Ghallagher, Jan Thomas, Mohamad El Houssami, Alexander Filkov, Bret Butler, John Hom, William Mell

Project Overview

- 3-year goal Effectiveness of fuel treatment
- Long-term goal Improved understanding of wildland fire behavior
- 2 field experiments to date

- Averages 1300 wildfires per year (2003-2013)
- Large crown-fire event every 5-10 years
- High level of WUI
- RxB conducted on 12,000 acres per year

Measurement Techniques - Fuel

- 36 pre- and post-fire clip plots (3 per understory tower)
- Fuels sampled by size class
 - Forest floor: fine, repro.,
 1hr, 10hr, 100hr
 - Shrub and Oak layer:
 1hr, 10hr (live and dead)

- Pre- and post-fire Airborne Laser Scanning data (400 kHz, pulse density 5.12 pts/m²)
- Provides canopy height and bulk densities (calibrated by upward sensing LiDAR)
- Resolution of 10 x 10 x 1 m

Measurement Techniques - Fire

- Aerial imagery: Series of georeferenced stills taken using RIT's Wildfire Airborne Sensor Program (WASP)
- Towers: overstory (8 thermocouples and 1 3D Sonic Anemometer) and understory (5 thermocouples, 1 vertical flow sensor, 1 vertical dualband radiometer)

Fire behaviour packages: 4 thermocouples,
 6 thin-skin calorimeters (total heat flux), 3D flow velocity

Fireline Intensity $I_f = ROS \cdot \Delta m \cdot h$ U5: U11: ~1500-4100 kW·m⁻¹ ~4700-6000 kW·m⁻¹ Plot 5 & 11

⊢orest floor –	U5		
			FF
	fine	wood 1hr	total
mean consumption [g·m ⁻²]	575.7	-0.7	575.0

Shrubs and Oaks – U5		
	1hr L+D	
mean consumption [g⋅m-²]	324.0	

Forest floor – U11					
	fine	wood 1hr	FF total		
mean consumption [g·m ⁻²]	507.4	391.7	899.1		

 Shrubs and Oaks – U11

 1hr L+D

 mean

 consumption [g·m-2]

 419.7

Preliminary Visual Results

Preliminary Visual Results

Preliminary Visual Results

Fuel - Branch and Bark Consumption

No more than 53% of shrub mass was consumed. 1 hour fuels: $S_1 < 2 \text{ mm}$; $S_2 = 2-4 \text{ mm}$; $S_3 = 4-6.35 \text{ mm}$ All S_1 consumed but less than 50% of S_2 and no S_3 .

- Most Radius variations between 0.32 and 6 mm.
- Same thickness as the bark collected in pans.

Firebrands

First attempt to quantify firebrand

Firebrands allowed a surface fire to cross easily a narrow fuel break

Firebrands

The firebrand density was determined by collecting samples with and without plastic film

Firebrands

Conclusions

- Valuable data collected on fire behavior in a forested environment
- Both fire progression/behavior and total fuel consumption
- Estimation of fire-line intensity for different types of fire spread
- Analysis of fire behavior related to fuel distribution and wind
- Firebrand characterization (size and time)
- Much more work to be done to thoroughly analyze results from both years

Albert Simeoni, Eric Mueller, Nicholas Skowronski, Kenneth Clark, Robert Kremens, Michael Ghallagher, Jan Thomas, Mohamad El Houssami, Alexander Filkov, Bret Butler, John Hom, William Mell

