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PREFACE 
 
 
 
This Bachelor of Science thesis is a preliminary overview briefly summarizing the main results 
and conclusions of the more comprehensive M.Sc. studies by the present author (Laitala, in 
prep.). This B.Sc. thesis is based on a poster presentation by Laitala and Lahtinen (2014), held 
at the Geological Society of America Annual Meeting in Vancouver, B.C., Canada, on October 
20, 2014. As the poster presentation represents the equally shared intellectual contributions by 
both of the authors but was entirely studied, written and carried out by the first author, this 
thesis formalizes the sole responsibility of the present author for the interpretational, written, 
pictorial, and layout content of the aforementioned presentation. 
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1. INTRODUCTION: TALVIVAARA ORE DEPOSIT – EUROPE’S LARGEST NI-PROJECT 
 

The Talvivaara ore deposit is located ca. 25 km from Sotkamo, eastern Finland (Figure 1). The 

polymetallic Talvivaara ore deposit (Ni-Zn-Cu-Co-U) is comprised of Kuusilampi and 

Kolmisoppi orebodies, which together contain ca. 2053 Mt ore @ 4.5 Mt Ni and 10.3 Mt Zn 

(Talvivaara Plc. 2012, 2014), constituting one of the largest nickel resources in Europe (USGS 

2013). The relatively low-grade but large tonnage sulfide ore is being utilized by using 

bacterially catalyzed bioheapleaching (Riekkola-Vanhanen 2013). Nickel deliveries started in 

2009, and when in full-scale production, the mine is aiming at 50 000 t / year level (Talvivaara 

Plc. 2014). The Talvivaara ore deposit is currently genetically classified as SEDEX (Loukola-

Ruskeeniemi and Heino 1996; Goodfellow and Lydon 2007), and as recently as in 2014, Mudd 

and Jowitt (2014) included it in the category of hydrothermal Ni-deposits. Jowitt and Keays 

(2011, p. 194) review the hydrothermal genetic model proposed by Loukola-Ruskeeniemi and 

Heino (1996), but consider also the syngenetic, hydrogenous seawater-scavenging model 

proposed by Kontinen et al. (2006). Globally, the metamorphically upgraded Talvivaara ore 

deposit is the largest shale-hosted Ni-(Cu-PGE) sulfide mineralization currently in production 

(Jowitt and Keays 2011). 

 

 
2. GEOLOGIC SETTING 
 

2.1. REGIONAL GEOLOGY 

 
The polymetallic Talvivaara ore deposit is hosted by the Paleoproterozoic C-S-Fe –rich 

Talvivaara formation, which belongs to the Sotkamo group (ca. 2.06–1.96 Ga) of primarily 

metasedimentary Kainuu Belt (Fig. 1). Overview on the geology of the Kainuu Belt is provided 

by Laajoki (2005). The ca. 200-km-long Kainuu Belt overlies a reactivated Neoarchean suture 

zone between Archean blocks (Kontinen et al. 2007; Lentua and Rautavaara Complexes in Fig. 

1). Rifting of the Archean Karelian craton margin at ca. 2.22–2.1 Ga and opening of the 

Svecofennian paleosea at 2.1 Ga on the western side of the Rautavaara Complex led to 

extensional deepening of the Kainuu basin (Korja et al. 2006; Lahtinen et al. 2008). The initial 

block faulting phase included chaotic sedimentation in the lower Sotkamo group (Gehör and 

Havola 1988), and mafic tuffite interbeds in ca. 2.1 Ga clastic shallow-water carbonates at 

Melalahti, Paltamo (60 km NNW of Talvivaara), indicate local magmatism during the incipient 

rifting stage (Kärki 1988, p. 163). Epiclastic, compositionally Fe-tholeiitic amphibolite schist 

interbeds occur also in silicate-facies iron formation units of the Tuomivaara and Tenetti forma-

tions (ca. 30 km NNE of Talvivaara), which belong lithostratigraphically to the lower or middle 

part of the Sotkamo group (Gehör and Havola 1988). 
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FIGURE 1. Geology of the Talvivaara area, map modified from Kontinen (2012). Sedimentary lithologies in 
the map legend should be prefixed with “meta-”. Small insert map: www.talvivaara.com   
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The Paleoproterozoic evolution of supracrustal sequences in nearby Russian Karelia has recen-

tly been synthesized by Melezhik et al. (2013), and the chronostratigraphic division by Hanski 

and Melezhik (2013) for the Fennoscandian Shield is broadly followed here (see also Strand et 

al. 2010). Lower lithostratigraphic age for the Sotkamo group is tentatively correlated here with 

the end of the Jatulian system (2.30–2.06 Ga) that includes the Great Oxidation Event (GOE) 

and the related global Lomagundi–Jatuli !13C isotopic excursion recorded by sedimentary car-

bonates (Karhu 1993; Karhu and Holland 1996). Termination of the Jatulian system is precisely 

bracketed at 2.058–2.060 Ga (Hanski and Melezhik 2013). The Sotkamo group is assigned here 

in a chronostratigraphic sense to the Ludicovian system (2.06–1.96 Ga) of Hanski and Mele-

zhik, which is traditionally in Finland referred in lithostratigraphical sense as Lower Kaleva. As 

the Ludicovian of Russian Karelia includes the type locality for the global Shunga event (world-

wide deposition of highly Corg-rich sediments; Strauss et al. 2013), it would be practical to har-

monize the nomenclature by adopting the Ludicovian system also for Finnish usage. Thus, the 

Talvivaara formation is here informally correlated broadly with the Corg-rich sedimentary rocks 

of the 2.05–1.98 Ga Zaonega fm in the Russian Karelia (op. cit.), and globally e.g. with the ca. 

2.08–2.02 Ga black shales of the Francevillian basin, Gabon (Ossa Ossa et al. 2013). 

 

2.2. LITHOSTRATIGRAPHY AND METAMORPHISM IN THE TALVIVAARA AREA 

 

Kontinen et al. (2013) have recently described the main lithostratigraphic units1 in the Talvi-

vaara area, which are summarized in Fig. 1. The Corg and sulfide-rich black mudstone–siltstone 

dominated metalliferous Talvivaara formation (TV fm) is underlain by the micaceous sand-

stone–siltstone dominated Hakonen fm (HK fm), and Kontinen et al. (2013) view the transition 

as abruptly gradational. The relation to the non-metal enriched overlying Kuikkalampi fm (KL 

fm) is similarly considered as abruptly gradational, although yet inconclusively defined. As a 

departure from Kontinen et al. (2013), the Nuasjärvi group (ca. 1.96–1.90 Ga) is here taken to 

represent autochthonous–parautochthonous deep-water sedimentary units (Gehör and Havola 

1988) that were backthrusted in structural inversion and tectonic stacking of the closing intra-

cratonic marginal basin during the ca. 1.90–1.87 Ga Svecofennian orogeny (Korja et al. 2006; 

Lahtinen et al. 2008). Local metamorphic peak at 1.88–1.87 Ga is given by U–Pb ages from 

Talvivaara uraninites (Lecomte et al. 2014). Although regional metamorphism in the Kainuu 

Belt ranges from amphibolite facies in the west to lower greenschist facies in the east (Laajoki 

2005), geobarometry by Törnroos (1982) indicates possible low-pressure domains at 

Kolmisoppi. 

__________________________________________ 
1 This nomenclature should be understood as ”work in progress”, as the formal status of the Talvivaara fm (and other 
local units belonging to the Sotkamo group) is currently undefined in the national bedrock database of Finland 
(FinStrati, DigiKP200; www.gtk.fi). The nomenclature of Kontinen et al. (2013) is used here in informal sense. 
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2.3. PREVAILING HYDROTHERMAL ORE-GENETIC MODEL – AND RECENT ADVANCES 

 

Since the genetic synthesis paper by Loukola-Ruskeeniemi and Heino (1996), the Talvivaara fm 

sediments have been mostly referred as hydrothermally Ni-Cu-Zn –enriched S and Corg-rich 

black shales (sensu lato) deposited in the deeper part of a stratified, restricted marine rift basin 

(e.g. Pasava et al. 2003; Jowitt and Keays 2011). High median Corg (7.6 wt %) and S (8.2 wt.%) 

values attest to anoxic/euxinic conditions, and iron sulfide !34S data have been interpreted as 

evidencing for both bacterial and thermochemical sulfate reduction (Loukola-Ruskeeniemi and 

Lahtinen 2013). Recently, Young et al. (2013) have also used anomalous fractionations in !33S 

data and "33S values as arguing for thermochemical reactions during interaction of sulfate-rich 

hydrothermal fluids with the Talvivaara muds. Ultramafic rocks (serpentinites) occurring in the 

area have been considered as the most plausible source for Ni (Loukola-Ruskeeniemi et al. 

2013). However, recent studies by Kontinen (2012) have placed tight geological constraints for 

the hydrothermal model: base metal and trace element ratios in Talvivaara point towards redox-

controlled synsedimentary metal enrichment in a well connected marine basin with temporally 

anomalous seawater Ni, Zn, Cu and Co concentrations. Compositional homogeneity of indivi-

dual mud beds, varying metal concentrations between adjoining sedimentation units (laminae, 

beds), and mass-flow features have indicated possible redepositional origin for the metalliferous 

muds (Kontinen et al. 2013). Similar average metal concentrations in other ca. 20 smaller 

Talvivaara-type occurrences in eastern Finland also support larger basinal controls (Rasilainen 

et al. 2013, p. 15–17). Other recent studies of Talvivaara are provided by Törmälehto (2008), 

Laitala (2014, in prep.), Laitala and Lahtinen (2014), and Virtasalo et al. (2014). 

 

 

3. MATERIALS AND METHODS 
 

3.1. KOLMISOPPI DRILL CORE DDKS-010, OBTAINING THE MATERIAL  

 
3.1.1. Selecting drill core DDKS-010 
 
After completing a prioritized campaign at the newly opened Kuusilampi open pit, resource 

definition drilling programme by Talvivaara Plc. (TVA Plc.) began delineating the dimensions 

of Kolmisoppi orebody more precisely in 2009 (Talvivaara Plc. 2010). As some of the fresh 

Kolmisoppi cores showed excellent partial preservation of the TV fm sedimentary lithologies, 

they were sampled by geologist Asko Kontinen (GTK) in late 2009. These initial studies led to 

launching a M.Sc. project for the present author in February 2010. Final selection of the core 

suitable for detailed study was done by (then) Talvivaara Plc. mining geologist Hannu Lahtinen 

and A. Kontinen. 
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Despite tight overfolding (Fig. 2) and partial tectonic repetition of lithological units, the 

Talvivaara fm is preserved relatively intact in the lower parts of DDKS-010, up to depth of ca. 

390 m (Fig. 2B). Only very basic structural analysis was included in this study.  

 

3.1.2. Drill core logging and sampling (GTK) 
 

Drill core DDKS-010 was logged, studied and sampled at the Talvivaara core facility in 2010. 

The core was digitally photographed (Canon PowerShot G9, RAW image format; three over-

lapping high resolution pictures per box + close ups), measured, and sampled for chemical 

whole-rock analyses (n=75) and thin sections (n=57). Chemical sampling had been preplanned 

and targeted by R. Lahtinen (GTK), and A. Kontinen provided specialist assistance in selecting 

the sample material for petrographic studies. 

 

FIGURE 2. A) Geological section of DDKS-010 showing the lithological units of Kolmisoppi drilling profile 
15000 (see Fig. 1). Modified from a picture drawn by Asko Kontinen. B) SURPAC -section by Talvivaara 
Mining Co. displaying 3-m average whole-rock Ni-concentrations in drilling holes at Kolmisoppi orebody, 
section 15000 (as in year 2010). Depths of GTK thin section samples (not resolvable here) are marked on 
the left side of the DDKS-010 column. Talvivaara Plc. cut-off limit for chemical analyses is <700 ppm Ni in 
handheld X-ray fluorescence analyzer. Scale bar: 125 m. 

A. 

 B. 
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3.2. TALVIVAARA PLC., CHEMICAL AVERAGE DATA FROM DDKS-010 (164–476 M) 

 

As an integral part of mineral resource inventorying, deposit scale modeling, and delineation of 

the Kuusilampi and Kolmisoppi orebodies, Talvivaara Mining Co. Plc. performs chemical 

whole-rock analyses for longer drill core intersections displaying >700 ppm Ni (cut-off limit for 

mining) in handheld X-ray fluorescence analyzer. Talvivaara Plc. uses 3-meter sample length 

for averaging, and the chemically analyzed sections are sampled continuously (further details 

for the methods used by TVA Plc. are described in Loukola-Ruskeeniemi and Lahtinen 2013). 

At the initiation of the present study, Talvivaara Plc. mining geologist Hannu Lahtinen provided 

chemical average data from the analyzed intersection of drill core DDKS-010 (164–476 m; Fig. 

2B). Some of the whole-core average data is visualized here in Figs. 3 and 4. The Talvivaara 

Plc. data proved very useful in preplanning and targeting the detailed GTK sampling. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3. A) Chemical profile diagrams between depths 398–476 m showing selected main and minor 
element average concentrations and ratios in the well-preserved lower part of drill core DDKS-010 (sample 
length 3 m, data by Talvivaara Plc.). B) Main element molar ratio diagram for all TVA Plc. 3-m average 
analyses (n=104) between depths 164–476 m in DDKS-010. Average Ni levels are shown with color 
codes. 

F = Fe tot  
S = S tot 
C = CaO 
M = MgO 
A = Al2O3 
N = Na2O 
K = K2O 
SiO2 = SiO2 
  

A. 

B. 
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FIGURE 4. Binary and trinary plots from the TVA Plc. average data in DDKS-010 (sample length 3 m, 
depths 164–476 m, n=104). Depths of GTK profiles are indicated. A–D) Diagrams showing the variation in 
pyrrhotite and pyrite contents. Arsenic (As) is a good proxy for syngenetic pyrite. Lowering of average Ni 
concentrations with increasing amount of pyrite can be seen in "S/Fe (mol) vs. As" and "S vs. Fe" 
diagrams. E) Vanadium has good overall linear correlation with Ni, Cu and Zn. F) Diagram ”V vs. Ni at 
depths 401–476 m” suggests separate original clay-bound and detrital mica-bound vanadium. G–H) Upper 
depth of the transitional siltstone member of Talvivaara fm in drill core DDKS-010 is positioned here at ca. 
455 m based on "K2O vs. V" , "Al2O3 vs. V" and ”V vs. Ni at depths 401–476 m” (Fig. 4F) diagrams. 

A. 

B. 

C. D. 

E. F. 

G. H. 
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FIGURE 4. (continued) I) K-feldspathic sand–silt component in the "transitional siltstone member" of TV fm 
can be seen in higher K/Al ratio at depths 455–476 m. Mica-bound K2O is high at 455–446 m. J–K) "SiO2 
vs. MnO" and "CaO vs. MnO" diagrams show that besides carbonate-bound MnO, in drill core DDKS-010 
there are clearly lithologies with non-carbonate bound Mn (currently in spessartine). High Mn/Ca (molar) 
ratio is interpreted here to indicate primary lithologies rich in Fe-Mn (oxyhydr)oxides. L) ”S vs. Co”: Cobalt 
has good correlation with Ni; also separate high-Co trend related to stronger deformation and formation of 
porphyroblastic high-Co pyrite is seen in drill core depths near the fold hinge zone (at ca. 285–305 m). 
 
 

3.3. GTK SAMPLES 

 

3.3.1. GTK sample materials and methods 

 

Sampling for this study aimed at representative coverage of the whole drill core DDKS-010, 

although focusing on the metal-enriched Talvivaara fm (Fig. 2). Lithologies from the Kuikka-

lampi fm were sampled for comparison. Total number of chemical samples was 75 (TV fm, 

n=64; KL fm, n=11), and number of polished thin sections was 57 (TV fm, n=47; KL fm, 

n=10). Sampling was targeted on visually well-preserved parts but some sections showing 

minor shearing, silicification and slight mobilization of sulfides were also sampled for control-

ling secondary effects (Fig. 5). Strongly sheared or obviously altered parts in DDKS-010 were 

avoided. Six chemical profiles were taken (indicated in Figures 5, 6 and 9 as Profs. 1.–5.; Prof. 

6. is grouped in ”Mn-rich pyrrhotite mudstones”), plus several additional sample pairs. 

Chemical whole-rock analyses were performed by Labtium Ltd., Espoo, using XRF and Leco 

(Ccarb and Corg) –methods. Continuous, good quality drill core box photographs served as  

I. J. 

K. 

L. 
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sedimentological documentation (Fig. 7). Additional mineralogical (SEM, EPMA) and high-

resolution in situ iron sulfide Fe and S isotope data (NordSIM, Stockholm; results in 

preparation) were also obtained, and Virtasalo et al. (2014) performed a separate in situ !34S and 

!56Fe study on laminated pyrite-rich samples at depth 406.15–406.55 m. 

 

3.3.2. Petrographic studies and present mineralogy of the samples 

 

DDKS-010 thin sections were optically scanned for macroscopic details, then microscoped at 

transmitted and reflected light (Fig. 8). About thousand microphotographs were taken. Grain-

scale isotopic heterogeneities in metaframboidal sedimentary pyrites indicate good preservation 

of primary signatures despite metamorphic recrystallization. Present main sulfides are pyrite 

(descriptively subdivided to Py1–Py5), pyrrhotite (Po1–Po5), sphalerite (Sph), pentlandite, chal-

copyrite and alabandite; other mineral phases are quartz, K-feldspar (orthoclase to microcline), 

phlogopite, biotite, muscovite, plagioclase, carbonate (dolomite to calcite), tremolite, spessar-

tine, rutile, titanite, apatite and thucholite (bitumen-rimmed uraninite grains). Detrital zircon 

and monazite often display secondary xenotime overgrowths. Pyrite may be completely absent 

in some lithologies. Carbonaceous matter was petrographically broadly divided into kerogenous 

(inert restite), bitumenous (mobilated) and graphitic (optically anisotropic) substances.  

 

3.3.3. Sample screening and classification 

 

Inhibitory effect of high Corg-content on metamorphic recrystallization of sulfidic black shales 

was already noted by Peltola (1960). Paleoproterozoic sulfide-rich black metashales (”black 

schists”) occur widely in Finland, and Kontinen et al. (2006, p. 42) recognized the value of their 

more detailed lithofacies study. Samples in the present GTK study were screened into chemical 

alteration categories 1a, 1b, 2 and 3, based on combined elemental coherence, drill core preser-

vation and thin section petrography (Figs. 5–8). Although Bekker et al. (2010, p. 469) down-

play the notion of sulfide-facies iron formation, many features observed in DDKS-010 are con-

sistent with the definition of sulfide-facies iron formation sensu James (1966). Pyrite-dominated 

laminated lithofacies forms one sedimentary endmember in Talvivaara fm (Fig. 6A–B), and 

Laajoki and Saikkonen (1977) have described laminated pyrrhotite-rich units in the broadly 

contemporary basin-margin iron formations of the Kainuu Belt. High iron-sulfide content and 

good preservation of the DDKS-010 samples necessitated treating syngenetic–early diagenetic 

pyrite grains as a sedimentary component (Love and Zimmerman 1961), and a sedimentology-

based, semi-quantitative geochemical–petrographical classification scheme was developed for 

the sulfidic metasedimentary lithofacies  applicable to the Talvivaara region (Laitala in prep.). 
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FIGURE 5. SiO2 vs. As diagram was utilized as part of the screening procedure for GTK samples, which 
were designated to alteration categories 1a, 1b, 2 and 3. Arsenic (As) is a good proxy for syngenetic–
diagenetic pyrite, and sheared 1b samples mainly show only the volumetric dilution by metamorphic silica. 
Non-altered Cat 1a samples were further used as a basis for more detailed, semi-quantitative chemical–
petrographical classification of the sulfidic mudstones, siltstones and shales (claystones) belonging to the 
Talvivaara and Kuikkalampi formations.  
 
 

Formation of marine sedimentary sulfides is thoroughly reviewed by Rickard (2012), and it is 

both conceptually and paleoenvironmentally important to make a distinction to hydrothermally 

enriched iron sulfide-rich sediments occurring in SEDEX -environments (as described e.g. in 

Lydon et al. 2000; Goodfellow and Lydon 2007). 
 

 

4. RESULTS: INTEGRATED SEDIMENTOLOGY, PETROGRAPHY AND GEOCHEMISTRY 
 

4.1. GEOCHEMISTRY OF GTK SAMPLES 

 
Geochemical data and results of the present GTK study will be fully documented in Laitala (in 

prep.), but they are briefly exemplified here with diagrams in Figures 5, 6 and 9. Overall, Ni-

Zn-Cu-(Co-Mo) correlate well in the Talvivaara fm (Figs. 6F–G) and follow the increase of clay 

and Corg-rich black sapropel mud component. Scatter in Ni/TOC (Fig. 6E) may partly result 

from aggregated carbonaceous matter sedimenting also as particular silt-size and larger detrital 

grains. The observed metal trends agree well with normal paleomarine metal scavenging and 

(GTK, n=73) 
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redox-controlled processes (e.g. Leventhal 1998). Although manganiferous mudstone litho-

logies (Figs. 4J–K and Fig. 6A) may indicate proximity to nearby fault-sourced brine fluids (e.g. 

Large et al. 1998) or volcanic hydrothermal complexes (Lydon et al. 2000), they are also a 

common feature of shallow oxic environments in redox-stratified marine basins (Force and 

Cannon 1988; see also Berner 1981). As the formation of sedimentary pyrite is closely depen-

dent on the availability of reactive organic carbon (Berner 1982), dissolved or nanoparticulate 

reactive iron (Raiswell and Canfield 2012), and bacterially reducible sulfate (Rickard 2012), 

chemical data in the present study implies a paleoenvironment for Talvivaara formation where 

all of these conditions were abundantly met. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18 

FIGURE 6. A) S vs. Fe tot diagram for the GTK data shows variation in the amounts of iron sulfide compo-
nents. The distinct separate pyrrhotite trend is interpreted to represent a primary feature related to the 
precursor sulfides and abundant Fe-Mn (oxyhydr)oxides in the protolith sediments, not as metamorphic 
pyrrhotitization of pyrite (Laitala and Lahtinen 2014). B) Features in S vs. As agree well with thin section 
observations: high As/S samples occur mostly at depth where minor diagenetic pyrite is first introduced to 
the sediments. 

A. 

B. 

(GTK, n=73) 

                 

                 

(GTK, n=73) 



19 

FIGURE 6. (continued) C) Al2O3 vs. Ni shows good overall correlation of Ni with clay-bound Al2O3, which is 
further attributed to clay-Corg –association. D–G) Simplified diagrams showing some correlations of redox-
sensitive elements in GTK data. Al2O3 vs. V shows the same overall trend as TVA Plc. average data in 
Fig. 4H. Broad scatter in TOC vs. Ni may partly result from Corg sedimenting as both sapropelic and detrital 
particular carbonaceous matter. Scatter in Zn/Ni may relate to ready mobilization of sphalerite in more 
permeable (siltier) mudstones, or primary microbial formation of additional sedimentary sphalerite. Slightly 
non-linear Ni vs. Cu –trend possibly indicates lower availability of copper in the sedimentary environment.  

 

C. 

D. E. 

G. F. 

                 

(GTK, n=73) 

Chalcopyrite vein 
in chemical sample 

322 

67 

422 
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4.2. SEDIMENTOLOGY, INTRODUCTORY NOTES 

 

Sedimentology of the drill core DDKS-010 will be treated comprehensively in the forthcoming 

work (Laitala in prep.). The present brief discussion focuses on the stratigraphically nearly con-

tinuous low-deformation section between 476.40 m to 390 m. Illustrations are found in Figs. 7–

8. Drill core pictures in Fig. 7 are referred by core depths, and thin sections in Fig. 8 by thin 

section sample depths (e.g. TS 443.19). Overall, this well-preserved metasedimentary sequence 

is interpreted to represent a deepening, gradational transgressive transition from the underlying 

non-metal enriched Hakonen fm to the metal-enriched TV fm. The Talvivaara fm is informally 

divided here into transitional pyrrhotitic siltstone member (ca. 476.40–455 m; Figs. 4F–I), 

pyrrhotitic mudstone member (455–431 m), and pyritiferous mudstone member (431–390 m). 

The clastic sedimentary terminology used here broadly follows Potter et al. (2005). 

 

4.3. TRANSITIONAL SILTSTONE MEMBER OF TALVIVAARA FM 

 

The transitional siltstone member of TV fm is dominated by subarkosic, partly very biotite-rich, 

muddy siltstones–fine sandstones and low-Ni black mudstones showing initially graded bedding 

(Fig. 7; 476.05, 473.29), but transitioning quickly to rhythmic sedimentation displaying diag-

nostic features of depositional environment with semidiurnal tidal cyclicities (e.g. Williams 

2000; Kvale 2012). Thinly mud-draped, horizontally laminated gray silts–fine sands in 470.73 

form rhythmically alternating packages with laminated dark silt-rich muds, apparently recording 

daily to semimonthly or monthly tidal periodicities as detailed by Adkins and Eriksson (1998). 

Small-scale ripple cross-lamination in TS 466.65 (Fig. 8A) attests also to intermittent dynamic 

migratory bedform sedimentation of the muddy silts, either from turbidites (Schieber 1990) or 

waning tidal currents (Jaeger and Nittrouer 1995). Abruptly erosive contact and decrementally 

fining laminae (from coarse sand to muddy fine sand–silt) in 466.52 may relate to successively 

weakening ebb-tide current velocities (De Boer et al. 1989). Heterolithic, rhythmically inter-

laminated graded mica-rich silt/black mud couplets in 461.14 (TS 461.11, Fig. 8A) are a classic 

feature of vertically accreted tidal rhythmites (Cowan et al. 1998). At 456.05, systematic thick-

ness variations in heterolithic sand–silt/mud couplets seem to record a symmetric, full fortnight 

(neap–spring–neap) cycle: about 28 semidiurnal lamina couplets (ordinate and subordinate 

lamina couplets) can be counted, which would indicate deposition of the 20-cm-thick sequence 

in ca. 14 days (Smith et al. 1990; Figure 6 in Adkins and Eriksson 1998). Upper part of the 

transitional siltstone member of TV fm is defined here by the increasing dominance of black 

clay-rich mudstones (455.64; see also Figs. 4F–H), and thin section TS 455.55 (Fig. 8A) 

appears to retain a plasmic microfabric in horizontally aligned (S0/S1) detrital biotite flakes 

occurring as unistrially concentrated layers (Kuehl et al. 1988; Allison et al. 1995). 
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FIGURE 7.  
 
Drill core pictures. 
Representative litho-
logies in the stratigra-
phically nearly conti-
nuous well-preserved 
lower part of DDKS-
010.  
 
Talvivaara fm is divi-
ded here informally 
into "transitional pyrr-
hotitic siltstone mem-
ber" (ca. 476.40–455 
m), "pyrrhotitic mud-
stone member" (455–
431 m) and "pyriti-
ferous mudstone 
member" (431–390 
m). Picture 340.35 
shows part of the 
GTK profile 3., which 
has the highest sys-
tematic Ni-trends of 
the studied samples.  
Drill core pictures of 
Kuikkalampi fm pyri-
tic shales (claysto-
nes; 160.43) and 
slightly pyritic black 
shales sensu stricto 
(67.20) are shown at 
lower right. 
 
Scale of the pictures 
varies, but core dia-
meter is 4 cm. Part of 
the drill core box is 
shown for color and 
brightness reference 
in some images.  
 
Approximate positi-
ons of GTK thin sec-
tion samples are also  
marked. Note: drill 
core depths below 
the images are only 
close estimates ser-
ving as picture identi-
fiers, not precise 
measured depths. 
However, the depths 
of chemical analyses 
and thin section sam-
ples are exact, as 
they were measured 
during sampling. 
 
See the main text for 
sedimentological ex-
planations. 
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FIGURE 8. A) Thin sections TS 466.65, TS 461.11 and TS 455.55 exemplify the transitional pyrrhotitic 
siltstone member of Talvivaara fm. Thin section TS 446.90 represents the pyrrhotitic mudstone member of 
Talvivaara fm, having significantly higher Corg-rich sapropelic component and metal concentrations. 
 

4.4. PYRRHOTITIC MUDSTONE MEMBER OF TALVIVAARA FM 

 
The pyrrhotitic mudstone member of TV fm (454.77 to 436.37 in Fig. 7) is dominated by black, 

fine, clay-rich mudstones having higher sapropelic Corg-component and significantly elevated 

metal concentrations. Frequently occurring rhythmically laminated sandy packages (e.g. 454.77, 

451.04, 443.35, 440.34, 439.92) continue to interlude the mud deposition repeatedly; recurring 

intervals vary from decimeters to meters, apparently recording periodicities from monthly to 

annual to pluriannual lunar cycles, and seasonal changes in paleotidal range (Williams 2000). In 

many cases, the sandy packages display similar overall tripartite rhythmicity as in the lower part 

of image 470.73. Depositional features of the TV fm pyrrhotitic mudstones are illustrated in the 

drill core pictures (Fig. 7), but completely massive homogenous thick mud layers (as in 446.95) 

possibly represent deposition from mobilized fluid muds (Jaeger and Nittrouer 1988; Mackay 

and Dalrymple 2011). Carbonaceous detritus in interluding, rhythmically laminated package of 

”microconglomeratic” coarse sand in TS 443.19 (Fig. 8B) has been interpreted as eroded from a 

nearby siliciclastic intertidal flat (Laitala 2014; see e.g. Tice and Lowe 2006; Schopf 2012). 

Dynamic, rapid deposition also for the metal-rich muds can be inferred from relatively thick, 

graded-laminated to bedded Mn and pyrrhotite-rich muds in 436.72–436.37. 
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FIGURE 8. (continued) B) Close up image of thin section sample TS 443.19 representing an interluding, 
”rhythmically laminated sandy package” that occur frequently in the pyrrhotitic mudstone member of TV fm 
(see the drill core 443.35 in Fig. 7). Rhythmic thick interlamination of coarse, micaceous ”microconglome-
ratic” quartz sand containing abundant carbonaceous detritus, and darker muddy clay and detrital mica-
rich laminae is more distinctive in the backside of the core. Mn-rich (garnetiferous) mud clot in the optically 
scanned thin section image displays such cohesiveness that is interpreted to likely have originated from 
subaerially consolidated intertidal muds rather than eroded from the local muddy substrate. Flakey micro-
bial mat chips and coarse quartz-silt grain binding mat fragments undisputedly originate from nearby silici-
clastic intertidal flat. Rounded sand-size carbon grains composed of pure aggregates of small, nearly uni-
modal carbonaceous particles may represent dried remains of surficial cyanobacteria blooms. 
 

4.5. PYRITIFEROUS MUDSTONE MEMBER OF TALVIVAARA FM 
 
The pyritiferous mudstone member of TV fm displays overall similar sedimentary features as the 

pyrrhotitic mudstone member, but gradually introduces pyrite as an increasing diagenetic and 

syngenetic sedimentary component (426.60–402.03 in Fig. 7.; see also Figs. 4B–D, Fig. 6B and 

Fig. 8C). Laminated pyrrhotite-rich lithologies in 417.92 possibly features a four-element rhyth-

mite consisting of flood–ebb–flood–ebb -laminae (Archer 1998) representing one day, or mere 

semidiurnal ebb-tide couplets representing deposition during two days of the spring-tide maxi-

ma. Silt-laminated pyritiferous mudstones in 408.90–407.73 may display seasonal variations in 

coarser sediment influx (possibly combined with weak tidal signatures), and sandy sequence in 

407.73 may represent a graded mass-flow bed, or gradually waning river-fed flood-plume  
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sedimentation. Virtasalo et al. (2014) have obtained marine isotopic signatures from high-

resolution isotopic studies of pyrite-rich laminites at 406.55–406.15 (not shown in Fig. 7). 

 
Thinly- to microlaminated, partly biomat-like regular pyritic shales (160.43, TS 67.20) of 

lithologically distinctive Kuikkalampi fm (see e.g. Figs. 6C and Fig. 9) resemble much of those 

described by Schieber (1989), and Kuikkalampi fm may represent a coeval distal deep-water 

facies to Talvivaara fm, or diachronous later basinal sedimentation phase. 

FIGURE 8. (continued) C) Thin section images exemplifying some the iron sulfidic lithofacies in drill core 
DDKS-010. Thin section sample TS 401.95 is from the stratigraphically continuous upper part of the pyriti-
ferous mudstone member of Talvivaara fm. Pyrite-rich massive mudstone TS 401.95 has very high total 
contents of pyrite and pyrrhotite (see Fig. 6A and 402.03 in Fig. 7). Stratigraphic position of the sample TS 
340.78 is unclear due to faulting, but the pyrrhotitic mudstone displaying graded silt-rich mud laminae is 
part of the GTK profile 3., which has the highest ”primary” Ni-Zn-Cu concentrations (see Figs. 6C and 6E–
G). Plane polarized photomicrograph shows the texturally preserved contact between fine mud and a 
graded pulse of muddy silt rich in detrital mica; the largest flakes are metamorphically coarsened porphyro-
blastic phlogopite. Microphotograph in reflected light (right) shows the texture of fine-grained sulfides. 
Optically scanned thin section TS 67.20 represents the typical thinly laminated, pyrite-bearing non-metal 
enriched shales of Kuikkalampi fm. Overall, the degree of metamorphic recrystallization in Kuikkalampi fm 
lithologies appear to be slightly lower than in the Talvivaara formation.  
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5. DISCUSSION – INTERPRETING THE PROVENANCE AND SEDIMENTARY ENVIRONMENT  

 

Figure 9 presents TiO2-Zr-Al2O3 –diagram for the GTK samples examined in the present study 

(Laitala in prep.). A comparison with global and Fennoscandian literature data (Appendix 1) 

shows that the metal-enriched Talvivaara fm samples plot distinctly towards mafic–ultramafic 

sources. This is compatible with Lahtinen et al. (2010), who identified a significant component 

originating from ca. 2.1 Ga continental basalts in Finnish Lower Kaleva (Ludicovian) meta-

sedimentary rocks. Fig. 9 is interpreted here as necessitating a metal-enrichment model for the 

Talvivaara formation that is somehow correlated with the primary composition and physical 

properties of sedimentary particles, not mere random external factors. Besides preservational 

factors, high Corg-levels in Talvivaara samples indicate also very prolific primary productivity, 

which would correspondingly require abundant nutrient supply. A cyanobacterial, bacterial, and 

archaeal origin for the biomass is here presumed (see e.g. Konhauser 2007). Phosphorus is one 

of the essential rate-limiting nutrients for photosynthetic primary producers, and riverine 

delivery from oxidatively weathered continental lithologies provides the largest flux of PO4
3– to 

the oceans (Papineau 2010; Van Kranendonk et al. 2012). Basaltic rocks have high phosphorus 

contents, and fine clay-rich basaltic soils with adsorbed PO4
3– are transported especially during 

flood events; estuaries may serve as short term repositories for basaltic clays, which are further 

preferentially remobilized, exported and hydrodynamically concentrated into nearby offshore 

zone (McCullogh et al. 2003; Webster et al. 2003; Douglas et al. 2005). 

 

Laitala and Lahtinen (2014) saw in the new GTK data (Fig. 9) features that point towards Fe-Ti 

–rich smectitic protolith clay component derived from subaerially weathered continental basalts, 

which could relate to the enhanced preservation of organic carbon and metal sequestration in the 

Talvivaara fm sulfidic sediments (Kennedy 2002; Ossa Ossa et al. 2013). The non-metal 

enriched Kuikkalampi fm samples appear to be significantly lower in this Fe-Ti –rich protolith 

sedimentary component (Figs. 6C, 8C, and 9). Overall, integrated results of the present study 

indicate a near-estuarine paleoenvironmental system (see also Lahtinen 2000, p. 168), and deep-

water tidal rhythmites in the Talvivaara fm attest to dynamical, complexly reprocessed proximal 

source for the mud–silt dominated sediments (e.g. Jaeger and Nittrouer 1995: Dalrymple and 

Choi 2007). Notably, iron appears to have been an unlimiting chemical reagent during the depo-

sition of the Talvivaara formation, which likely implies both abundant detrital contribution 

(Krapez et al. 2003; Fralick and Pufahl 2006; Kyläkoski et al. 2013; Rasmussen et al. 2013) and 

ferruginous deeper water marine background conditions (Poulton and Canfield 2011; Raiswell 

and Canfield 2012), possibly also locally contributed by continental riverine runoff (Schieber 

1987; Fralick and Pufahl 2006; Pufahl et al. 2013). 
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FIGURE. 9. A) TiO2-Zr-Al2O3 –ratio diagram for the GTK mudstone–siltstone samples (n=62; this study) 
showing a distinct mafic component in the metal-enriched Talvivaara fm samples. Note that the singular 
KL fm sample having higher metal concentrations (sample 165.85, Ni 1905 ppm; see Fig. 6C) plots in the 
field of metal-enriched TV fm samples. Some Fennoscandian and global reference lithologies are plotted 
for comparison, the literature references are listed in Appendix 1. B) Insert diagram showing separately all 
GTK analyses (n=73; this study). The TiO2-Zr-Al2O3 –diagram is adopted from Fralick (2003). 

A. 

B. 

 (Huyck 1990) 
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6. CONCLUSIONS 
 
 
Preliminary results from this study (Laitala and Lahtinen 2014; Laitala in prep.) of the Paleo-

proterozoic Talvivaara fm (ca. 2.1–1.95 Ga) in Sotkamo, Finland, call for revising the current 

hydrothermal ore-genetic model for the Talvivaara Ni-Zn-Cu-Co –deposit. The new chemical 

data and sedimentological interpretations point coherently toward paleoenvironmental, physical 

exogenic surficial and redox-processes in concentrating the metals in marine, tidally dominated 

river influenced deep-water proximal offshore environment. Fundamentally, the enrichment and 

sequestration of Ni-Zn-Cu-Co-(Mo-V-U) in the Corg and iron sulfide-rich Talvivaara fm muds is 

interpreted to be linked to GOE-related major changes in the Earth’s atmospheric and global 

surface environment, as reviewed by Holland (2005). In the present study, the metal-enriched 

Talvivaara fm is identified having a distinct protolith clay component derived from subaerial 

oxidative weathering of continental mafic–ultramafic lithologies. While the present GTK data 

does not trace the ultimate sources of metals or local marine sulfur, the proposed tidally resedi-

mented paleoestuarine model for the Talvivaara fm would be consistent with elevated sulfate 

concentrations by nearby riverine delivery. Sulfate in the global seawater is mostly supplied by 

oxidative weathering of continental sulfides (e.g. Lyons et al. 2006; Farquhar et al. 2010), and it 

is hypothesized that the Talvivaara fm was sedimented near such delivery point. This scenario 

would also be consistent with the ca. 2.02 Ga emergence of sediment-hosted metal deposits in 

stratified, shallow basins with oxygenated sulfate-rich surface waters (Leach et al. 2010, p. 

602). Indications of semidiurnal tidal rhythmicity at various stratigraphic levels of the Talvi-

vaara formation imply unrestricted connection to the global paleo-ocean, but this would be 

compatible with regionally elevated metal concentrations in a narrow, likely significantly river 

influenced epicontinental ”Kainuu paleoseaway” situated near the Karelian craton margin. 
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