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Overview of Tsunami Modeling 

• GUIDING PHILOSOPHY:   
Most serious threat = local Cascadia subduction zone (CSZ) tsunamis 

• THUS with limited resources we: 

1. Limited distant tsunami scenarios to maximum considered historical and hypothetical 
events. 

2. Limited local CSZ scenarios to best deterministic representation of  the 10,000-yr 
paleoseismic record. 

3. Used a static tide at MHHW (mean higher high water). 

4. Used the finite element model SELFE with unstructured grids: 

• Highly efficient, parallel processing 

• Simulates very small features such as jetties without multiple, nested grids 

5. Tested CSZ sources for compatibility to data from:  

• Paleotsunami deposits 

• Paleosubsidence 

10/28/2014 GSA, Vancouver, BC, 10-21-14 



CSZ Fault Models 
1. Megathrust rupture (whole SZ) 

2. Splay fault rupture (at Pleis.-Plioc. contact)  

3. Deep megathrust rupture  
(ends at Pleistocene wedge) 

• Fault geometry of McCrory et al. (2004) 

• Okada (1985) point source model 

• Dynamic coulomb wedge theory  
(Wang and Hu, 2006) 
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A’ A 
Sumatra Earthquake 

Chlieh and others (2007) 

McCrory et al. (2004) 



Fault Model 

• Splay fault rupture 
– Imaged in seismic lines offshore 

– 30˚ dip; merges with megathrust 

– Slip is partitioned to splay fault 

Mann and Snavely (1984) 

Cape 

Blanco 
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Fault Model 

• Deep megathrust rupture 
– “Deep buried rupture” 

– Coseismic slip limited to inner, Tertiary wedge 

– Outer wedge poorly coupled 

Adam et al., 2004 
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Use paleoseismology as 
the foundation for 
tsunami modeling 

• 10,000-yr record of deep sea 
turbidites 

• Coastal evidence of coseismic 
subsidence and tsunami inundation 

• Tsunami deposits in an Oregon 
coastal lake (Bradley Lake) 

• Tsunami deposits in an Oregon bog 
(Ecola Creek marsh, Cannon Beach) 
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(Bradley Lake) 

Cannon Beach 



Assumptions for CSZ logic tree: 

 Full-margin ruptures efficiently depict the tsunami hazard (e.g., Priest et al., 2014) 

 Peak slip deficits ≈ times between full-margin (sand) turbidites x convergence rate. 

 Partial ruptures (mud turbidites) decrease slip deficit available to full-margin sources. 

 

 

Picture at top is from Chris Goldfinger; illustrations are from or modified from Goldfinger et al. (2012). 
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31 PC Rogue Canyon 23 PC Cascadia Channel Central OR 12 PC Cascadia Channel WA 

Modified from  

Goldfinger et al. 

(2012) 
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Full-Margin Turbidite Mass vs Age 
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Comparison of binning: Numbers (of 19) full-margin Cascadia turbidites 
binned by slip deficit (follow) times versus mass (Witter et al., 2011; 2013) 
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Slip Deficit Time (turbidite follow times) 

Mass binning (colors) 
 + slip deficit times  

assigned to “T-shirt” scenarios 



Minimum peak CSZ slip needed to account for 
coastal paleotsunami deposits at Bradley Lake 

and Cannon Beach: 8-15 m 
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Peak Slip 

Illustration from  

Wang and He (2007) 



CANNON BEACH PALEOTSUNAMI EXPERIMENT 

Simulated tsunami 

inundations on1000-yr-

old paleo-landscapes 

compared to cored 

tsunami deposits. 

 

  
Figure from Priest et al. (2009) 
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Cannon Beach Experiment RESULTS 
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Minimum peak fault slip = ~ 14 m (splay fault) –15 m (no splay fault) 

to inundate past the last 3 Cascadia tsunami deposits 



• Validate tsunami 

simulations against 4600 

yrs of CSZ tsunami 

deposits in Bradley Lake 

1 km 

Bradley Lake  Simulate the LEAST tsunamis 

 Experimental variables: 

• Landscape 

• Sea level 

• Earthquake source 

Bradley Lake Experiment 
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~6-m barrier 
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2009 lidar 

topography with 

1925-1939 

straightened 

channel 

1700 topography 

simulated by 1925 

shoreline 

(no 2009 foredunes) 

Seacliff topography 

(most landward shoreline) 

A B C 



Bradley Lake Experiment  
RESULTS 

• For AD 1700 shoreline (contemporaneous with an “average” turbidite): 
Minimum peak fault slip = ~12 (splay) to 13 m (no splay) (Witter et al., 2012) 

• For most landward shoreline (smallest tsunami able to reach lake): 
Minimum peak fault slip = ~8 (splay) to 9 m (no splay) (Witter et al., 2012) 

• Mean recurrence of Bradley Lake tsunami sands = 380–400 yrs  
in last 4,600  yrs when geomorphic condition of lake effectively captured tsunami sands, 
according to Kelsey et al. (2005) 

• Mean recurrence of turbidites directly offshore = 300-380 yrs  

(Priest et al., 2014) 

• Mean Slip Deficit from mean turbidite recurrence = 10-13 m  
(at 34mm/yr convergence on CSZ) 

• Mean slip deficit = minimum slip needed to get tsunamis in the lake 
a conclusion compatible with conclusions of segment tsunami paper of Priest et al. (2014). 
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LOGIC TREE  FOR 15 FULL-MARGIN CASCADIA SOURCES 
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0.5/19 events in 10,000 yrs 

0.5/19 events 

3/19 events 

10/19 events 

5/19 events 

Modified from Priest et al. (2013) 



Qualitative Explanation of Cascadia Tsunami Scenarios 
shown on published tsunami inundation maps (TIMs) 

SB 379 (approximately) 
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Earthquake 

Size 

(weight) 

Slip Deficit (yrs)  

[Max Slip (m)] 

Fault  Geometry 

(weight) 

Earthquake 

Scenario 

Mw Total  

Weight 

Extra-extra-
large  

(1/19/2 = 0.02) 

1200 

[36-44] 

Splay fault (0.8) XXL 1 ~9.1 0.02 

Shallow buried rupture (0.1) XXL 2 ~9.2 <0.001 

Deep buried rupture (0.1) XXL 3 ~9.1 <0.001 

Extra-large 

 (1/19/2 = 0.02) 

1050-1200 

[35-44] 

Splay fault (0.8) XL 1 ~9.1 0.02 

Shallow buried rupture (0.1) XL 2 ~9.2 <0.001 

Deep buried rupture (0.1) XL 3 ~9.1 <0.001 

Large  

(3/19 = 0.16) 

650-800 

[22-30] 

Splay fault (0.8) L 1 ~9.0 0.13 

Shallow buried rupture (0.1) L 2 ~9.1 0.02 

Deep buried rupture (0.1) L 3 ~9.0 0.02 

Medium  

(10/19 = 0.53) 

425-525 

[14-19] 

Splay fault (0.6) M 1 ~8.9 0.32 

Shallow buried rupture (0.2) M 2 ~9.0 0.11 

Deep buried rupture (0.2) M 3 ~8.9 0.11 

Small  

(5/19 = 0.26) 

300  
[9-11] 

Splay fault (0.4) SM 1 ~8.7 0.10 

Shallow buried rupture (0.3) SM 2 ~8.8 0.08 

Deep buried rupture (0.3) SM 3 ~8.7 0.08 

Cascadia Earthquake Source Parameters 
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From Witter et al. (2011) with 

modification by Priest et al. (2013) 



Earthquake Slip Models (Witter et al., 2011) 
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Earthquake Deformation Models 
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Hazard Curves for % Confidence Cascadia 
Elevation and Inundation Will NOT Be Exceeded 
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AK64 

AKmax 

100% 

26% 

79% 

95% 

98% 

Modified from Witter et al. (2011) 

Sm1 

M1 

XXL1 
100% 

L1 

XL1 

Red numbers are tsunami scenarios that were computer-

simulated for the whole Oregon coast. Inundation and peak 

values of wave elevation, velocity, and  other data were 

published by Oregon Dept. of Geology and Mineral Industries 

(www.oregontsunami.org). 
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AKmax  

Has maximum directivity to the Oregon coast. 
(Source 3 illustration from Tsunami Pilot Study Working Group (2006)) 
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Maximum-Considered Distant Tsunami Sources for TIMs 

Maximum Hypothetical (AKmax) Maximum Historical (AK64) 

From Priest et al. (2009) 



INUNDATION AND EVACUATION MAP PRODUCTS 
• Inundation Maps (TIMs) – 7 inundations whole coast 

– 5 Local CSZ “Tsunami T-Shirt Scenarios”  
(SM1, M1, L1, XL1, XXL1 – splay fault scenarios) 

• MHHW Tide 

• Coseismic subsidence taken into account 

• Maps include wave time series, inundated building 
exposure, and wave elevation profiles 

– 2 Distant Alaska Scenarios 

• Alaska 1964 

• Alaska Max 

• Evacuation Brochures – 2 inundations in towns 

– XXL1  

– Alaska Max 

– Routes, preparedness information 

• Evacuation Mapper 2 inundations whole coast  

– XXL1 + Alaska Max on Google type base maps 

– www.oregontsunami.org 
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http://www.oregontsunami.org/


Tsunami Evacuation Map Brochure Explanation 
(tested for color blindness) 
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www.oregontsunami.org  
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Tsunami Inundation Map (TIM) -  Local Cascadia Tsunamis 
 Shows Cascadia tsunami arrival at Brookings, OR 

~18 minutes 
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DOGAMI Tsunami Inundation Map Curr-16, Plate 1 

Base map is lidar-derived shaded relief. 



Tsunami Inundation Map (TIM) - Distant Tsunamis 

Brookings, Oregon 
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DOGAMI Tsunami Inundation Map Curr-16, Plate 2 


