Oxygen and hafnium isotope geochemistry of zircon, quartz, and garnet from the near-trench Crawfish Inlet and Krestof Plutons, Baranof Island, Alaska

Claudia I Roig¹, Aaron Cavosie¹⁴, Cameron Davidson², John Garver³, and John W. Valley⁴

¹Department of Geology, University of Puerto Rico-Mayagüez
 ²Department of Geology, Carleton College
 ³Department of Geology, Union College
 ⁴Department of Geoscience, University of Wisconsin, Madison

PREVIOUS STUDIES

Farris and Patterson (2009) and Bradley et al. (2003)

Davidson and Garver, 2013

http://www.keckgeology.org/keckwp/wpcontent/uploads/26thSymVol_Alaska_Davidson.pdf

IN THIS STUDY

- O and Hf isotope, and U-Pb geochronology data on the Crawfish Inlet Pluton (CIP) and the Krestof Pluton (KP) from the eastern part of the Sanak-Baranof Belt on Baranof Island.
- Correlate O data with available εHf (zircon) and U/Pb age (zircon) data;
- (2) Thermometry and inter-mineral O fractionations;
- (3) Origin and evolution of the CIP and KP.

SAMPLES

Sample from the Crawfish Inlet Pluton (CIP), Krestof Pluton (KP), and Aialik Pluton (RP), Alaska				
Sample	# of samples from site	# of samples bearing:		
		Zrc	Qtz	Grt
CIP	n = 9	n = 7	n = 9	n = 2
KP	n = 1	n = 1	n = 0	n = 0
RP	n = 1	n = 1	n = 1	n = 0
Total	n = 11	n = 9	n = 10	n = 2

Tonalites to granodioriorites Grt-Ms leucogranites

Why is this important? Generation of granitoids along continental margins

Crawfish Inlet Pluton, Whale Bay, AK.

METHODS

Oxygen isotope analysis

- Zircons, quartz, and garnets from the CIP and KP.
- δ¹⁸O analyses by laser
 fluorination at the UW-Madison
 stable isotope laboratory.
- All samples were corrected for accuracy with UW6-2 (Valley et al., 1995).

• Origin of melt (crust vs. mantle).

Hafnium isotope analysis and U/Pb geochronology

- U-Pb and Hf isotope data
 collected by LA-MC-ICPMS
 at the Arizona LaserChron
 Center.
- Crystallization ages and mantle extraction ages.

δ^{18} O (ZIRCON) FROM THE CIP, KP, AND RP

$\delta^{18}O$ (QUARTZ) AND $\delta^{18}O$ (GARNET) FROM THE CIP

COEXISTING QUARTZ AND ZIRCON FROM THE CIP AND RP

COEXISTING QUARTZ- GARNET FROM THE CIP

εHf vs. U/Pb age evolution for four granitoid samples from the CIP

δ^{18} O vs. ϵ Hf

SUMMARY OF RESULTS

 $\rightarrow \delta^{18}O$ CIP, KP and RP (uncertainty at 2σ)

Zrc: 6 - 7.5‰, and 9.6‰

Qtz: 9.7‰, 12.5‰

Grt: 7.3 - 8.1‰

→ U/Pb ages for CIP and KP

47.3±1.2 - 53.1±0.8 Ma, 52.1±1.0 Ma for KP

 $\longrightarrow \epsilon Hf$ for CIP (1 σ)

+18.2 ± 1.5 at 47.4 Ma to +0.8 ± 1.5 at 54.0 Ma

Discussion and Conclusion

- All zircons show evidence for the incorporation of recycled crust;
- δ¹⁸O (Qtz–Zrc) and (Qtz- Grt) mineral fractionations yield temperatures lower than those considered magmatic temperatures, indicating resetting of δ¹⁸O (quartz);
- U/Pb ages show evidence of multiple pulses of magmatism spanning from 53-47 Ma.

Discussion and Conclusion

- Primitive (juvenile) zircons with higher εHf values record the least evolved oxygen isotope ratios;
- Age progression shows a distinctive magmatic evolution;
- The range of δ^{18} O, ϵ Hf, and U-Pb ages in the CIP, appears to indicate lesser supracrustal input with time;
- Spatial heterogeneity, age, and isotopic chemistry in the CIP, and KP raises the question on the possible source and petrogenesis.

ACKNOWLEDGEMENTS

Geology Consortium

ECK Learning Science Through Research

