Constraints on Late Jurassic and Cretaceous atmospheric pCO$_2$ and primary productivity from triple oxygen isotopes in dinosaur eggshells

Huan Ting Hu1, Benjamin H. Passey1, Shaena Montanari2, Karen Chin3

1Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
2American Museum of Natural History, Sackler Institute for Comparative Genomics, New York, NY, USA
3Department of Geological Sciences and University of Colorado Museum, UCB 265, University of Colorado at Boulder, Boulder, CO, USA

Thanks to: Beverly Johnson
Background

Triple Oxygen isotope system

\[^{16}\text{O} (99.762\%), \quad ^{17}\text{O} (0.038\%), \quad ^{18}\text{O} (0.200\%) \]

- **Mass Dependent Fractionation (MDF)**
 \[\delta^{17}\text{O} \approx 0.52 \delta^{18}\text{O} \]

- **Mass Independent Fractionation (MIF)**
 \[\delta^{17}\text{O} = C \cdot \delta^{18}\text{O}, \text{ where } C \approx 1 \]

- **\(^{17}\text{O}\) anomaly (\(\Delta^{17}\text{O}\))**
 \[\Delta^{17}\text{O} = \delta^{17}\text{O} - \lambda \cdot \delta^{18}\text{O} \quad (\lambda = 0.528) \]
\[\Delta^{17}\text{O} \left(\text{O}_2 \right) \text{ Budget Model} \]

\[\text{pCO}_2 - \Delta^{17}\text{O} \text{ relationship} \]

Stratospheric Photochemical MIF Reactions

\[\text{O}_2 (-) \xleftrightarrow{} \text{O}^{(3\text{P})} \xleftrightarrow{} \text{O}_3 (+) \xleftrightarrow{} \text{CO}_2 (+) \]

17O-depleted \hspace{2cm} 17O-enriched

Troposphere

\[\text{O}_2 (-) \quad \text{CO}_2 (0) \]

\[\tau \approx 10^3 \text{ years} \quad \tau \approx 10^1 \text{ years} \]

\[\text{Respiration} \quad \text{Photosynthesis} \quad \text{Hydrosphere} (0) \]

\[\text{Biosphere} \]
$\Delta^{17}\text{O} (\text{O}_2)$ Budget Model

$\Delta^{17}\text{O} (\text{O}_2) \sim p\text{CO}_2 / \text{GPP}$

$\Delta^{17}O(O_2) = -0.2876 - 0.00058 \cdot \left[\frac{p\text{CO}_2}{\text{GPP} / \text{GPP}_0} \right]$

(Bao et al., 2008)

Young et al., 2014
Respiration:

\[\text{food} \rightarrow \text{Atm.}O_2 \rightarrow \text{DIC} \rightarrow \text{CH}_2\text{O} + O_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \]

Body water isotope model

Eggshell Calcite: \(\text{CaCO}_3 \)

Tooth enamel apatite: \(\text{Ca}_5(\text{PO}_4,\text{CO}_3)_3(\text{OH},\text{CO}_3) \)

\[^{18}\alpha_{\text{CaCO}_3-\text{H}_2\text{O}} = 1.0380 \pm 0.0008 \quad (1\sigma, n = 7) \]

\[\lambda_{\text{CaCO}_3-\text{H}_2\text{O}} = 0.5245 \pm 0.0003 \quad (1\sigma, n = 7) \]
Body water isotope model

Oxygen Isotope Mass Balance

\[\sum_a R_{MW} \cdot f_{in,a} \cdot \alpha_{\alpha-MW} + R_{O_2} \cdot f_{O_2} \cdot \alpha_{\text{lung-O}_2} = \sum_{\beta} R_{BW} \cdot f_{out,\beta} \cdot \alpha_{\beta-BW} \]

17O-enabled version of the Kohn (1996, GCA) body water model

Important Model Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>meteoric water/leaf water composition</td>
</tr>
<tr>
<td>Animal Physiology</td>
<td>e.g.: Sweat/Vapor ratio; WEI: amount of water used per unit energy metabolized: (ml / kJ)</td>
</tr>
<tr>
<td>Fraction of Leaf Water</td>
<td>Fraction of evaporated leaf water relative to whole food water intake</td>
</tr>
<tr>
<td>Atmospheric O₂</td>
<td>Atmospheric O₂ composition (Δ^{17}O)</td>
</tr>
</tbody>
</table>
Oxygen Input Space
Model Sensitivity

Source H$_2$O: δ^{18}O = -10‰
Δ^{17}O = 0.01‰

Δ^{17}O (O$_2$) = 0‰
Δ^{17}O (O$_2$) = -0.288‰
Δ^{17}O (O$_2$) = -0.506‰
Δ^{17}O (O$_2$) = -1‰

$F_{\text{leaf water}} = 0$
$F_{\text{leaf water}} = 0.10$
$F_{\text{leaf water}} = 0.20$
$F_{\text{leaf water}} = 0.4$

Rh = 0.50
WEI = 0.30 ml/kJ
Sweat/(Sweat+Vapor) = 0.7
Modeled Endmembers (Max Evap.)

Source meteoric water $\delta^{18}O_{mw}$(%o):

-20, -10, 0, 10

$\Delta^{17}O$ (%):

-20, -10, 0, 10

$\delta^{18}O_{mw}$(%o): $\lambda = 0.528$

$\delta^{18}O$ (as H$_2$O, vs. SMOW):

-0.25 to 0.05

$\Delta^{17}O$ (O$_2$) = -0.506‰

Rh = 0.20
WEI = 0.10 ml/kJ
$\Delta^{17}O_{mw}$ = 0.010‰
Sweat/(Sweat+Vapor) = 0.5
$F_{leaf\ water}$ = 0.40

"Max Evaporation Model"
Modeled Endmembers (Min Evap.)

“Min Evaporation Model”

\[\text{Rh} = 0.80 \]
\[\text{WEI} = 0.50 \text{ ml/kJ} \]
\[\Delta^{17}\text{O}_{\text{mw}} = 0.030\% \]
\[\text{Sweat/(Sweat+Vapor)} = 0.9 \]
\[F_{\text{leaf water}} = 0.01 \]
\[\Delta^{17}\text{O} (\text{O}_2) = -0.506\% \]

“Max Evaporation Model”

\[\text{Rh} = 0.80 \]
\[\text{WEI} = 0.50 \text{ ml/kJ} \]
\[\Delta^{17}\text{O}_{\text{mw}} = 0.030\% \]
\[\text{Sweat/(Sweat+Vapor)} = 0.9 \]
\[F_{\text{leaf water}} = 0.01 \]
\[\Delta^{17}\text{O} (\text{O}_2) = -0.506\% \]
Body Water Model

"Min Evaporation Model"

Possible Body Water
\(\Delta^{17}O - \delta^{18}O\)
Space for Modern Animals

"Max Evaporation Model"

\[\Delta^{17}O \text{ (as H}_2\text{O, } \lambda=0.528) \]

\[\delta^{18}O \text{ (as H}_2\text{O, vs. SMOW) \} }\]
Modern Samples

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Species</th>
<th>N</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild Birds</td>
<td>Ostrich</td>
<td>3</td>
<td>Ethiopia, South Africa</td>
</tr>
<tr>
<td></td>
<td>Starling</td>
<td>1</td>
<td>Baltimore</td>
</tr>
<tr>
<td>Captive Birds</td>
<td>Chicken</td>
<td>6</td>
<td>Baltimore, New Jersey, China, Japan,</td>
</tr>
<tr>
<td></td>
<td>Ostrich</td>
<td>2</td>
<td>China</td>
</tr>
<tr>
<td></td>
<td>Duck</td>
<td>1</td>
<td>New Jersey</td>
</tr>
<tr>
<td></td>
<td>Emu</td>
<td>1</td>
<td>New Jersey</td>
</tr>
</tbody>
</table>

Fossil Dinosaur Eggshells

<table>
<thead>
<tr>
<th>Location</th>
<th>Species</th>
<th>N</th>
<th>Time Period</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bugin Tsav</td>
<td>Oviraptorid</td>
<td>5</td>
<td>Late Cretaceous</td>
<td>Camp. /Mass.</td>
</tr>
<tr>
<td>Bayn Dzak</td>
<td>Oviraptorid, Protoceratops (?)</td>
<td>3</td>
<td>Late Cretaceous</td>
<td>Campanian</td>
</tr>
<tr>
<td>Ukhaa Tolgod</td>
<td>Oviraptorid</td>
<td>4</td>
<td>Late Cretaceous</td>
<td>Campanian</td>
</tr>
<tr>
<td>Two Medicine Fm.</td>
<td>Hadrosaur, Troodon</td>
<td>5</td>
<td>Late Cretaceous</td>
<td>Campanian</td>
</tr>
<tr>
<td>Cedar Mountain Fm.</td>
<td>Dinosaurid</td>
<td>3</td>
<td>Early Cretaceous</td>
<td>Albian</td>
</tr>
<tr>
<td>Morrison Fm.</td>
<td>Dinosaurid</td>
<td>11</td>
<td>Late Jurassic</td>
<td>Oxfordian</td>
</tr>
</tbody>
</table>
Modern Birds

\[\Delta^{17}O \text{ (as } H_2O, \lambda=0.528) \]

vs.

\[\delta^{18}O \text{ (as } H_2O, \text{ vs. SMOW}) \]

“Min Evaporation Model”

“Max Evaporation Model”
Modern Birds

- Farmed ostrich, emu, duck, chicken
- Australian Emu from humid to arid environment
- Baltimore area: backyard chickens, starlings, doves
- Wild ostrich: Ethiopia, Kenya, S. Africa

"Min Evaporation Model"

"Max Evaporation Model"
Modern Samples

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Species</th>
<th>N</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild Birds</td>
<td>Ostrich</td>
<td>3</td>
<td>Ethiopia, South Africa</td>
</tr>
<tr>
<td></td>
<td>Starling</td>
<td>1</td>
<td>Baltimore</td>
</tr>
<tr>
<td>Captive Birds</td>
<td>Chicken</td>
<td>6</td>
<td>Baltimore, New Jersey, China, Japan,</td>
</tr>
<tr>
<td></td>
<td>Ostrich</td>
<td>2</td>
<td>China</td>
</tr>
<tr>
<td></td>
<td>Duck</td>
<td>1</td>
<td>New Jersey</td>
</tr>
<tr>
<td></td>
<td>Emu</td>
<td>1</td>
<td>New Jersey</td>
</tr>
</tbody>
</table>

Fossil Dinosaur Eggshells

<table>
<thead>
<tr>
<th>Location</th>
<th>Species</th>
<th>N</th>
<th>Time Period</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bugin Tsav</td>
<td>Oviraptorid</td>
<td>5</td>
<td>Late Cretaceous</td>
<td>Camp. /Mass.</td>
</tr>
<tr>
<td>Bayn Dzak</td>
<td>Oviraptorid, Protoceratops (?)</td>
<td>3</td>
<td>Late Cretaceous</td>
<td>Campanian</td>
</tr>
<tr>
<td>Ukhaa Tolgod</td>
<td>Oviraptorid</td>
<td>4</td>
<td>Late Cretaceous</td>
<td>Campanian</td>
</tr>
<tr>
<td>Two Medicine Fm.</td>
<td>Hadrosaur, Troodon</td>
<td>5</td>
<td>Late Cretaceous</td>
<td>Campanian</td>
</tr>
<tr>
<td>Cedar Mountain Fm.</td>
<td>Dinosaurid</td>
<td>3</td>
<td>Early Cretaceous</td>
<td>Albian</td>
</tr>
<tr>
<td>Morrison Fm.</td>
<td>Dinosaurid</td>
<td>11</td>
<td>Late Jurassic</td>
<td>Oxfordian</td>
</tr>
</tbody>
</table>
Modern Birds

Bugin Tsav, Mongolia

Late Cretaceous Campanian/Maastrichtian

Dinosaurs
Late Cretaceous
Campanian

Two Medicine Fm., USA

Bayn Dzak, Mongolia

Ukhaa Tolgod, Mongolia

Modern Birds

Dinosaurs

$\Delta^{17}O$ (as $H_2O, \lambda = 0.528$)

$\delta^{18}O$ (as H_2O, vs. SMOW)
Dinosaurs

Early Cretaceous
Albian

Cedar Mountain Fm., USA

Modern Birds

$\Delta^{17}\text{O} \text{ (as H}_2\text{O, } \lambda = 0.528)$

$\delta^{18}\text{O} \text{ (as H}_2\text{O, vs. SMOW)}$
Late Jurassic Oxfordian Morrison Fm., USA

Modern Birds

Morrison Fm., USA

Late Jurassic Oxfordian

\[\Delta^{17}O \text{ (as H}_2\text{O, } \lambda = 0.528) \]

\[\delta^{18}O \text{ (as H}_2\text{O, vs. SMOW)} \]
Modern $\Delta^{17}\text{O (O}_2) = -0.506\%$
Models for Dinosaurs

Min Evaporation Model

Max Evaporation Model

Morrison Fm. (Late Jurassic)

$\Delta^{17}O (O_2) = ?$

$\Delta^{17}O (as \text{H}_2\text{O, } \lambda = 0.528) = \ ?$

$\delta^{18}O_{mw} = -10\%$

Various $\Delta^{17}O (O_2)$
$\Delta^{17}O_{bw}-\Delta^{17}O (O_2)$ response Curves
Morrison Formation Results

$\Delta^{17}O (O_2)$:
-1.348‰ ~ -2.879‰
<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Min (‰)</th>
<th>Max (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern</td>
<td>Various</td>
<td>-0.450</td>
<td>-0.405</td>
</tr>
<tr>
<td>Maastrichtian/</td>
<td>Bugin Tsav</td>
<td>-0.717</td>
<td>-0.288</td>
</tr>
<tr>
<td>Campanian</td>
<td>Bayn Dzak</td>
<td>-1.380</td>
<td>-1.058</td>
</tr>
<tr>
<td>Campanian</td>
<td>Ukhaa Tolgod</td>
<td>-0.908</td>
<td>-0.412</td>
</tr>
<tr>
<td>Campanian</td>
<td>Two Medicine Fm.</td>
<td>-1.004</td>
<td>-0.401</td>
</tr>
<tr>
<td>Albian</td>
<td>Cedar Mountain Fm.</td>
<td>-0.999</td>
<td>-0.524</td>
</tr>
<tr>
<td>Oxfordian</td>
<td>Morrison Fm.</td>
<td>-2.879</td>
<td>-1.348</td>
</tr>
</tbody>
</table>

$\Delta^{17}O(O_2) = -0.2876 - 0.00058 \left(\frac{pCO_2}{GPP_i \over GPP_0} \right)$
<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Min (ppm)</th>
<th>Max (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern</td>
<td>Various</td>
<td>203</td>
<td>282</td>
</tr>
<tr>
<td>Maastrichtian/Campanian</td>
<td>Bugin Tsav</td>
<td>0</td>
<td>827</td>
</tr>
<tr>
<td>Campanian</td>
<td>Bayn Dzak</td>
<td>1335</td>
<td>1893</td>
</tr>
<tr>
<td>Campanian</td>
<td>Ukhaa Tolgod</td>
<td>215</td>
<td>1075</td>
</tr>
<tr>
<td>Campanian</td>
<td>Two Medicine Fm.</td>
<td>197</td>
<td>1241</td>
</tr>
<tr>
<td>Albian</td>
<td>Cedar Mountain Fm.</td>
<td>409</td>
<td>1233</td>
</tr>
<tr>
<td>Oxfordian</td>
<td>Morrison Fm.</td>
<td>1837</td>
<td>4491</td>
</tr>
</tbody>
</table>

\[\Delta^{17}O(O_2) = -0.2876 - 0.00058 \left(\frac{pCO_2}{GPP_t/GPP_0} \right) \]

Assuming \(GPP_t = GPP_0 \), inferring the paleo-pCO\(_2\).
pCO$_2$ at GPP$_t$ = GPP$_0$
Comparison with other studies

\[\Delta T(2\times) = 1.5 \text{ °C} \]
\[\Delta T(2\times) = 2.8 \text{ °C} \]
\[\Delta T(2\times) = 6 \text{ °C} \]

(Royer et al., 2007)

![Graph showing CO₂ concentration over time with different markers for different temperature scenarios.](image-url)
Estimates of $\Delta^{17}O(O_2)$

<table>
<thead>
<tr>
<th>Time</th>
<th>Location</th>
<th>Min (%)</th>
<th>Max (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern</td>
<td>Various</td>
<td>-0.450</td>
<td>-0.405</td>
</tr>
<tr>
<td>Maastrichtian /Campanian</td>
<td>Bugin Tsav</td>
<td>-0.717</td>
<td>-0.288</td>
</tr>
<tr>
<td>Campanian</td>
<td>Bayn Dzak</td>
<td>-1.380</td>
<td>-1.058</td>
</tr>
<tr>
<td>Campanian</td>
<td>Ukhaa Tolgod</td>
<td>-0.908</td>
<td>-0.412</td>
</tr>
<tr>
<td>Campanian</td>
<td>Two Medicine Fm.</td>
<td>-1.004</td>
<td>-0.401</td>
</tr>
<tr>
<td>Albian</td>
<td>Cedar Mountain Fm.</td>
<td>-0.999</td>
<td>-0.524</td>
</tr>
<tr>
<td>Oxfordian</td>
<td>Morrison Fm.</td>
<td>-2.879</td>
<td>-1.348</td>
</tr>
</tbody>
</table>

\[
\Delta^{17}O(O_2) = -0.2876 - 0.00058 \cdot \left[\frac{pCO_2}{GPP_t} \right] \]
Inferring $\Delta^{17}O(O_2)$-pCO_2-GPP

Modern GPP-pCO_2-$\Delta^{17}O(O_2)$ response curve

$\Delta^{17}O(O_2) = -0.405\%$

$\Delta^{17}O(O_2) = -0.450\%$

$GPP_t/GPP_0 = 1$

$pCO_2 = 200-280$ ppm
Inferring $\Delta^{17}\text{O}(\text{O}_2)$-pCO$_2$-GPP

Modern and Later Jurassic GPP-pCO$_2$-$\Delta^{17}\text{O}(\text{O}_2)$ response curve

$\Delta^{17}\text{O}(\text{O}_2) = -1.348\%$

$\Delta^{17}\text{O}(\text{O}_2) = -2.879\%$

Modern

Late Jurassic
Inferring $\Delta^{17}\text{O}(\text{O}_2)$-pCO$_2$-GPP

Modern and Later Jurassic GPP-pCO$_2$-$\Delta^{17}\text{O}(\text{O}_2)$ response curve

Late Jurassic
Conclusions and Future Work

• **Conclusions**

 - The Δ^{17}O (O_2) in troposphere is an indicator for the ratio of pCO_2 and GPP.
 - The 17O-body water model enables the predictions for Δ^{17}O (O_2).
 - Fossil biocarbonates carry the Δ^{17}O (O_2) signal and can be used to reconstruct pCO_2/GPP and we have observed anomalous Δ^{17}O signals compared to modern samples. This proxy is based on entirely different mechanisms than existing pCO_2/GPP proxies.
 - The triple oxygen isotope approach, while unable to uniquely constrain pCO_2 or GPP, shows promise for identifying distinctive modes of the carbon cycle in the geological past.

• **Future Work**

 - Combing our model with accurate GPP models to find out the best fit of pCO_2 and GPP for each time period.
 - Fine tuning the body water model by investigating more details into the animal physiology.
 - More work in determining the environment conditions for these samples to constrain the predicted Δ^{17}O (O_2) range.
Acknowledgements

• We thank Michael Bender and Kate Dennis for bringing to our attention the potential use of animal $\Delta^{17}\text{O}$ to reconstruct past CO$_2$ levels, and for many useful discussions since.

• We thank John Southon for showing us the use of H$_2$ and Fe catalyst to convert oxygen from CO$_2$ to H$_2$O.

• We thank Matt Kohn for sharing his body water $^{18}\text{O}/^{16}\text{O}$ model spreadsheet.

• Thank Scott Pitz, Sara Rivero, Naomi Levin, Greg Henkes, and Sophie Lehmann for providing chicken and wild bird eggshells.

• Thank Shuning Li and Haoyuan Ji for helping sample analysis.