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Figure 1. Topographic map of the study area. The outline of the MHAFB is shown in yellow. Vents are shown as triangles, red are typical Snake River olivine tholeites, 
green are high in potassium. Locations of wells analyzed in this study are shown as circles.  Geologic map of Idaho shown for context in upper right-hand corner.

Abstract:

 From 2010 to 2012 Project HOTSPOT completed three drill holes in the Snake 
River Plain to depths of ~2 km each. The three drill sites (Kimama, Kimberly and 
Mountain Home) were strategically chosen to sample a nearly continuous 
chronologic record of emplacement and deposition of the northeast migration 
of the Yellowstone Hotspot relative to the North American Plate. The objective of 
the drilling project was to investigate geothermal potential in three distinct 
regimes of the SRP. We characterize the flow-unit scale stratigraphy of 
whole-rock core from the western-most drill hole (Mountain Home) and identify 
and describe outcrop analogs. The methods used for this characterization 
include identification of volcanic facies observations, stratigraphic and textural 
relationships, and sedimentary and volcaniclastic marker horizons. We correlate 
the lithologic logs acquired at Mountain Home to the borehole geophysical data 
in an e�ort to identify signatures that represent fine-scale variations in 
stratigraphy, composition and/or alteration. 

 Flow boundaries are identified by key flow-units. Major flow units include 
vesicular oxidized flow tops, massive flow interiors, and rubbly flow bases. 
Periods of non-emplacement are marked by sedimentary deposition. 
Hyaloclastites indicate rapid quenching and proximal water sources or 
sub-aerial emplacement. The oldest basalts are highly fractured, and the flow 
units are more difficult to discern. Fractures and vesicles are filled with 
calcareous and zeolitic alterations, indicating a history of hydrothermal 
fluid-rock interactions.
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Figure 4. A lithology log, gamma density log, and core comparison. The gamma ray log is useful for distinguishing sediments from basalt �ows. This is due to the relatively low abundance of radioactive elements in the basalts, as compared to the 
sediments. The core box on the left contains a contact between a basaltic �ow group approximately 30 m thick and lacustrine sediments. This is shown in the gamma log as a relatively low gAPI for the basalt and then a jump in gAPI in the sediments.     
The core box on the right is an example of what hyaloclastites and epiclastics, which are the dominant lithologies in the MH-2 core from 1,280 m to 1,460 m, look like in core. Close-up photos are shown to the right and an outcrop equivalent is shown in 
Figure 5.
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Ages estimated from stratigraphic relationships and comparisons with 
equivalent units in neighboring areas. 
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Figure 2. Geologic map of the study area. MHAFB is 
outlined in yellow. Lava �ows are delineated and named 
after the vents from which they are believed to have 
erupted. A correlation chart for the corresponding map is 
shown above. Ages are estimated from stratigraphic rela-
tionships and comparisons with equivalent units in 
neighboring areas.
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Figure 5. An outcrop exposure 1 mile north of C.J. Strike Dam. This outcrop is comprised of a single �ow with three distinct 
�ow facies or �ow units. At the base of the �ow is a glassy well consolidated breccia-like horizon, known as hyaloclastites. Hyalo-
clastites indicate lava �ow/water interaction, mark the �ow terminus, and indicate subaqueous solidi�cation. This �ow overlies a 
series of �uvial and lacustrine sediments. Soft sediment deformation has occurred in the lacustrine sediments, indicating dewater-
ing, possibly as a result of the added overburden of the basaltic �ow. The sediments are identi�able in the gamma density logs as 
radioactive isotopes of potassium, uranium and thorium, which are much more abundant in the sediments. 

Figure 3. A comparison of 3 lithologic logs from 
the Mountain Home Idaho area. MH-1 was a test well on 
the Mountain Home Air Force Base, drilled to a depth of 
1,342 m (Lewis and Stone, 1988). Bostic 1a was a wildcat 
well drilled to a depth of 2,926 m (Arney et al, 1985). 
The horizon used to correlate the three, is the package 
of lacustrine sediments; believed to contain the transi-
tion from Pliocene Glenns Ferry to Pleistocene Bruneau 
formations from Paleo-Lake Idaho. 
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