Opportunities to promote visuospatial skills development and geoscience learning in the Next Generation Science Standards (NGSS)

Nicole D. LaDue, Northern Illinois University, DeKalb, Illinois
What are visuospatial skills?

Ekstrom et al. 1976

Vandenburg et al. 1978
What are visuospatial skills?

Ekstrom et al. 1976

Vandenburg et al. 1978
What are visuospatial skills?

Paper Folding

Mental Rotation

Ekstrom et al. 1976

Vandenburg et al. 1978
What are visuospatial skills?

Paper Folding

Domain General: Skills and abilities that may transfer to a variety of settings

Ekstrom et al. 1976

Vandenburg et al. 1978
What are visuospatial skills?

Domain General Spatial Skills

STEM Careers

Shea et al., 2001; Wai et al., 2009
What are visuospatial skills?

Domain General Spatial Skills

STEM Careers

HOW?

Shea et al., 2001; Wai et al., 2009
What are visuospatial skills?
What are visuospatial skills?

(Qayyum, F., Hemstra, N, Singh, R., 2013)
What are visuospatial skills?

Courtesy of R. Scherer, NIU)
What are visuospatial skills?

Domain Specific: Abilities and skills associated with particular setting

Courtesy of R. Scherer, NIU)
What are visuospatial skills?

Spatial Thinking Frameworks

Visuospatial Skills and K-12

1. Geoscience Assessments

2. Next Generation Science Standards (NGSS)
1. Visuospatial Skills and Geoscience Assessments

New York State Regents Exam
- Given in January, June, August
- Available online
- Focus on visual representations

Sample Population
- 144 Students (75 male)
- 9th Grade (m=14.6 years)
- 1 rural / 1 suburban
- 74% white
1. Visuospatial Skills and Geoscience Assessments

Text questions without ESRT (T)

2. The modern heliocentric model of planetary motion states that the planets travel around
 (1) the Sun in slightly elliptical orbits
 (2) the Sun in circular orbits
 (3) Earth in slightly elliptical orbits
 (4) Earth in circular orbits

All ESRT Questions (RT)

3. To an observer on Earth, the Sun appears brighter than the star Rigel because the Sun is
 (1) hotter than Rigel
 (2) more luminous than Rigel
 (3) closer than Rigel
 (4) larger than Rigel

Visual Representation questions without the ESRT (V)

4. The cross section below represents four locations on a mountain. The arrow indicates the prevailing wind direction.

Which location has the warmest and most arid climate?
 (1) A
 (2) B
 (3) C
 (4) D

The photograph below shows index fossil shells found in bedrock in New York State.

These index fossil shells were most likely found in the surface bedrock of which landscape region?
 (1) Adirondack Mountains
 (2) the Catskills
 (3) St. Lawrence Lowlands
 (4) Tug Hill Plateau
1. Visuospatial Skills and Geoscience Assessments

Text questions without ESRT (T)

2. The modern heliocentric model of planetary motion states that the planets travel around
(1) the Sun in slightly elliptical orbits
(2) the Sun in circular orbits
(3) Earth in slightly elliptical orbits
(4) Earth in circular orbits

All ESRT Questions (RT)

3. To an observer on Earth, the Sun appears brighter than the star *Rigel* because the Sun is
(1) hotter than *Rigel*
(2) more luminous than *Rigel*
(3) closer than *Rigel*
(4) larger than *Rigel*

Visual Representation questions
without the ESRT (V)

4. The cross section below represents four locations on a mountain. The arrow indicates the prevailing wind direction.

Which location has the warmest and most arid climate?
(1) A
(2) B
(3) C
(4) D

The photograph below shows index fossil shells found in bedrock in New York State.

These index fossil shells were most likely found in the surface bedrock of which landscape region?
(1) Adirondack Mountains
(2) the Catskills
(3) St. Lawrence Lowlands
(4) Tug Hill Plateau
1. Visuospatial Skills and Geoscience Assessments

Text questions without ESRT (T)

2. The modern heliocentric model of planetary motion states that the planets travel around
 (1) the Sun in slightly elliptical orbits
 (2) the Sun in circular orbits
 (3) Earth in slightly elliptical orbits
 (4) Earth in circular orbits

Visual Representation questions without the ESRT (V)

4. The cross section below represents four locations on a mountain. The arrow indicates the prevailing
 wind direction.

Which location has the warmest and most arid climate?
 (1) A (3) C
 (2) B (4) D

All ESRT Questions (RT)

3. To an observer on Earth, the Sun appears brighter than the star Rigel because the Sun is
 (1) hotter than Rigel
 (2) more luminous than Rigel
 (3) closer than Rigel
 (4) larger than Rigel

22. The photograph below shows index fossil shells found in bedrock in New York State.

These index fossil shells were most likely found in the surface bedrock of which landscape region?
 (1) Adirondack Mountains
 (2) the Catskills
 (3) St. Lawrence Lowlands
 (4) Tug Hill Plateau
1. Visuospatial Skills and Geoscience Assessments

Text questions without ESRT (T)

2. The modern heliocentric model of planetary motion states that the planets travel around
 (1) the Sun in slightly elliptical orbits
 (2) the Sun in circular orbits
 (3) Earth in slightly elliptical orbits
 (4) Earth in circular orbits

Visual Representation questions without the ESRT (V)

4. The cross section below represents four locations on a mountain. The arrow indicates the prevailing wind direction.

Which location has the warmest and most arid climate?
 (1) A
 (2) B
 (3) C
 (4) D

All ESRT Questions (RT)

3. To an observer on Earth, the Sun appears brighter than the star *Rigel* because the Sun is
 (1) hotter than *Rigel*
 (2) more luminous than *Rigel*
 (3) closer than *Rigel*
 (4) larger than *Rigel*

22. The photograph below shows in situ fossil shells found in bedrock in New York State.

These in situ fossil shells were most likely found in the surface bedrock of which landscape region?
 (1) Adirondack Mountains
 (2) the Catskills
 (3) St. Lawrence Lowlands
 (4) Tug Hill Plateau
1. Visuospatial Skills and Geoscience Assessments

NYS Earth Science Regents Exam

- Spatial Skills
- Text-Only Questions
- Reference Table Questions
- Visual Questions

LaDue & Hambrick, unpublished ms
1. Visuospatial Skills and Geoscience Assessments

<table>
<thead>
<tr>
<th></th>
<th>Text</th>
<th>Reference Table</th>
<th>Visual</th>
<th>Overall Regents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial</td>
<td>✔*</td>
<td>×</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

* $p < .05$, all others $p < .01$
Spatial skills influence performance earth science assessments.

LaDue & Hambrick, unpublished ms
1. Visuospatial Skills and Geoscience Assessments

Spatial skills influence performance earth science assessments.

<table>
<thead>
<tr>
<th>Spatial</th>
<th>Text</th>
<th>Reference Table</th>
<th>Visual</th>
<th>Overall Regents</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️*</td>
<td>✔️</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* $p < .05$, all others $p < .01$

LaDue & Hambrick, unpublished ms
1. Visuospatial Skills and Geoscience Assessments

With the appropriate domain specific training, domain general spatial skills may not influence performance

Hambrick et al., 2012
2. Visuospatial Skills and NGSS

Integration of 3 Dimensions:
1. Science & Engineering Practices
2. Crosscutting Concepts
3. Disciplinary Core Ideas

http://www.nextgenscience.org/
2. Visuospatial Skills and NGSS

Science and Engineering Practices
1. Asking questions and defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Developing explanations and designing solutions
7. Engaging in argument
8. Obtaining, evaluating, and communicating information

http://www.nextgenscience.org/
2. Visuospatial Skills and NGSS

Science and Engineering Practices
1. Asking questions and defining problems
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Developing explanations and designing solutions
7. Engaging in argument
8. Obtaining, evaluating, and communicating information

http://www.nextgenscience.org/
2. Visuospatial Skills and NGSS

• K-ESS2-1: Use and share observations of local weather conditions to describe patterns over time.

• 1-ESS1-1. Use observations of the sun, moon, and stars to describe patterns that can be predicted.

http://www.nextgenscience.org/
2. Visuospatial Skills and NGSS

- 2-ESS2-2. Develop a **model** to represent the shapes and kinds of land and bodies of water in an area.

- 3-ESS2-1. Represent data in **tables** and **graphical displays** to describe typical weather conditions expected in a particular season. (Assessment of graphical displays is limited to **pictographs** and **bar graphs**.)
2. Visuospatial Skills and NGSS

• 4-ESS2-2. Analyze and interpret data from maps to describe patterns of Earth’s features (ex. can include topomaps)

• 5-ESS2-1 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

http://www.nextgenscience.org/
2. Visuospatial Skills and NGSS

• MS-ESS1-1. Develop and use a **model** of the Earth-sun-moon system to describe the cyclic **patterns** of lunar phases, eclipses of the sun and moon, and seasons.

• MS-ESS2-3. Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

http://www.nextgenscience.org/
2. Visuospatial Skills and NGSS

- HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.
2. Visuospatial Skills and NGSS

- Early Development of Spatial Thinking (Newcombe & Frick, 2010)
 - Elementary school
 - Object versus Embodied Perspective
2. Visuospatial Skills and NGSS

- Early Development of Spatial Thinking (Newcombe & Frick, 2010)

 - High School, table-top models
 - Analogical Reasoning: compare and contrast model attributes
2. Visuospatial Skills and NGSS

- Early Development of Spatial Thinking (Newcombe & Frick, 2010)
 - Move from surface similarity to abstract concepts
 - Identify incorrect inferences
2. Visuospatial Skills and NGSS

- Early Development of Spatial Thinking (Newcombe & Frick, 2010)
- Analogical Reasoning (Jee, B.D. et al., 2010)

Sketching (Jee, B. D., Gentner, D., Uttal, D. H., Sageman, B., Forbus, K., Manduca, C. A., ... & Tikoff, B. (2014).
- More Knowledge = More structures and causal relations in sketches
Next Steps

• Connecting Spatial Framework with Assessment Data
 (Kastens, K. A., Pistolesi, L., & Passow, M. J., 2014)

• Review Article aligning existing literature with K-12 activities

• Evaluating existing college-level spatial activities with K-12 students
Next Steps

• Connecting Spatial Framework with Assessment Data (Kastens, K. A., Pistolesi, L., & Passow, M. J., 2014)

• Review article aligning existing literature with K-12 activities

• Evaluating existing college-level spatial activities with K-12 students
Next Steps

• Connecting Spatial Framework with Assessment Data (Kastens, K. A., Pistolesi, L., & Passow, M. J., 2014)

• Review Article aligning existing literature with K-12 activities

• Evaluating existing college-level spatial activities with K-12 students
What do your students see?

Nicole D. LaDue
Assistant Professor
Geology & Environmental Geosciences
Northern Illinois University
DeKalb, IL