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INTRODUCTION

*  We want to understand how fold-thrust belts and
their associated features form over space and time.

« Can we quantify fold-thrust belt evolution between
restored and deformed cross sections?
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GEOLOGIC BACKGROUND
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Greater Himalaya:

E Maneting Formation

|:| Higher structural level, undifferentiated

E Chekha Formation |:| Lower structural level, upper metased. unit
E Lower structural level, orthogneiss unit
After Long et al, 201 Ib |:| Lower structural level, lower metased. unit

Paro Fm., Lesser and Subhimalaya:

- Paro Formation

E Lower Lesser Himalayan units
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E Quaternary sediment



Thermochronologic Data
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RECIPE FOR DETERMINING AGES OF FAULT MOTION

|. Create a flexural model that accounts for progressive
deformation, exhumation, isostatic and topographic
history in small increments

2. Assign ages to fault motion and input flexural model in a
thermal-kinematic model to calculate thermal history and
cooling ages along the cross section

3. Compare calculated cooling ages to published
thermochronologic data to establish timing and rates of
deformation
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NOT A NEW APPROACH

BUT A NEW FRAME OF REFERENCE

Convergence rate
[20-mm/yr]

a) Coutand et al., 2014

b) McQuarrie et al., in prep.
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OUIES FIONS FOR MOBELING CROSSSECHEINS
AIND COOLEINGAGES

|. How do constant versus variable deformation rates affect

model output?

2. Does changing out-of-sequence thrust timing affect

output!?
3. Does topographic resolution matter?

4. Which velocity, kinematic scenario, and topography

combination best matches published cooling data?



BB CURAL MODEOF CROSS SECHR G
MOVE by Midland Valley Exploration

« Use ~10 km increments of shortening to sequentially deform
cross section

«  Account for evolving topography, structural loading, erosional
offloading at each deformation step

- Attain best fit to known parameters of Trashigang Cross
Section:

|. Mapped surface geology

2. Foreland basin thickness
3. Dip of the Main Himalayan Thrust (MHT)
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BEERURAL MODEL

ESTIMATING TOPOGRAPHY

FINAL DEFORMED CROSS SECTION TOPOGRAPHIES (SPLIT KT)
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KINEMATIC SCENARIOS
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e RMAL - KINEMARIC MODEL —REC =

Turning a spatial model into a displacement field

« Emplace a 0.5 x 0.5 km resolution grid of points in the flexural
model's subsurface

« High-resolution tracking of rock particles as they move from
subsurface to surface
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Turning a spatial model into a displacement field

Emplace a 0.5 x 0.5 km resolution grid of points In the flexural
model’s subsurface

High-resolution tracking of rock particles as they move from
subsurface to surface

Assign ages of fault motion to create velocity field for
each ~10-km deformation step

simply put: v= Ax/At
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CONSTANTVELOCITY  (23-0 Ma = 17.3 mm/yr)
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CONSTANTVELOCITY  (23-0 Ma = 17.3 mm/yr)
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VARIABLE VELOCITY A
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VARIABLE VELOCITY B
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KINEMATIC SENSITIVITY — EARLY KT
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TOPOGRAPHIC SENSITIVITY — APATITE FISSION TRACK
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TOPOGRAPHIC SENSITIVITY — ZIRCON (U-Th/He)
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EEST T TING MODEL
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EE R FEING MODEETCONSIDERING GEGIMET R
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EE R FEING MODEETCONSIDERING GEGIMET R
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CONCLUSIONS

Using this forward model with a pinned footwall and evolving
fault geometry, fold-thrust belt evolution can be modeled over
longer spans of time than with pinned-fault models.

Predicted cooling ages are most sensitive to (|) variable rates of
deformation, (2) kinematic timing of fault motion, (3) modeled
topography’s ability to account for structural uplift and flexural
loading, and (4) cross section geometry.

Best fits to published AFT, ZHe, and MAr cooling ages along the
Trashigang line of section use deformation rates that vary over
the time of fold-thrust belt development (5-75 mm/yr).

Geometry of the Main Himalayan Thrust may differ from the
published Trashigang cross section below the Greater Himalaya.
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New Fault

Isostatic load above old
topgraphic surface
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THERMAL-KINEMATIC MODEL

PECUBE

Functions as...

|. a kinematic model that calculates rock transport (advection)
velocities

2. a thermal model that calculates a thermal field using fault
motion, erosion above the topographic surface, rocks' thermal
properties, and thermal boundary conditions

3. a set of age prediction algorithms that calculate
thermochronometer ages at the topographic surface for each
deformation step



THERMAL-KINEMATIC MODEL

VARYING AGES AND VELOCITIES OF FAULT MOTION

«  Constant Velocity
23-0 Ma =17.28 mm/yr

*  Velocity A [Long et al.,2012] — ID model estimates in study area

23-21 Ma = 31.6 mm/yr
21-15Ma = [4.65 mm/yr

15-10 Ma = 37.28 - 41.28 mm/yr
|10-0 Ma = 3.99 - 5.99 mm/yr

*  Velocity B [McQuarrie & Ehlers, 2013] — 2D model 20-30 km west of Trashigang

20-17 Ma = 21.07 mm/yr

| 7-13.5 or |3 Ma=2198-25.11 mm/yr
~|3-11 or 10.25 Ma = 6942 - 7456 mm/yr
~|1-0 Ma = 540 - 5.54 mm/yr



