

2014 IAH-CNC Annual Meeting – GSA Conference VANCOUVER, BC

A numerical analysis to illustrate the usefulness of drawdown log-derivative diagnostic plots in characterizing the heterogeneity of non-Theis aquifers

Silvain Rafini¹, Romain Chesnaux¹, Lucie Dal Soglio²

¹ CERM, Université du Québec à Chicoutimi, Québec, Canada ² Université d'Avignon, laboratoire d'hydrogéologie, Francer

Presentation summary

Definitions

- Theis vs non-Theis aquifer
- Radial vs non-radial behaviour
- Diagnostic plots
- Barker's GRF theory
- Multistage responses

Experimental numerical modeling

- Faulted aquifers (with various fault dip)
- Variable-thickness aquifers

Conclusions

Theis vs non-Theis aquifer

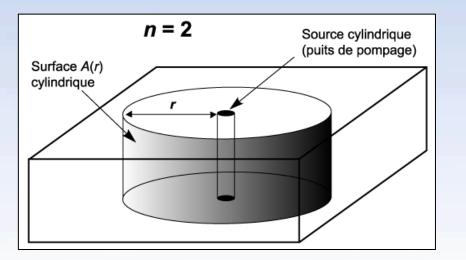
Defined by the shape of the cross-flow surface A

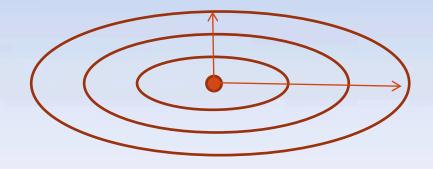
Theis

Non-Theis

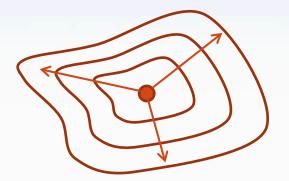
Cylindrical (homogeneous isotropic aquifer)

Elliptical (homogeneous anisotropic aquifer)





Any shape (heterogeneous aquifer)



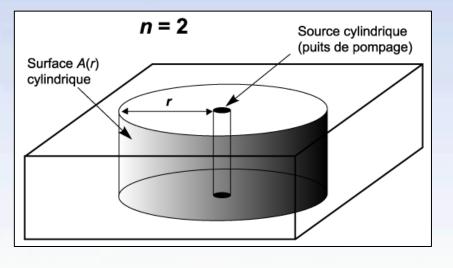
Radial vs non-radial flow regime

Defined by the transient growth of the cross-flow area A(r)where r(t) is the travelled distance from the source at elapsed time t

Theis

Cylindrical (homogeneous isotropic aquifer)

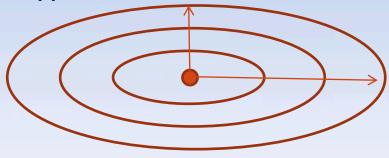
 $A(r) \sim r \rightarrow \text{Radial}$



Definition of the radial flow regime : $A(r) \sim r$

Non-Theis

Elliptical (homogeneous anisotropic aquifer) $A(r) \sim r \rightarrow \text{Radial}$



Any shape (heterogeneous aquifer) A(r) ~ r

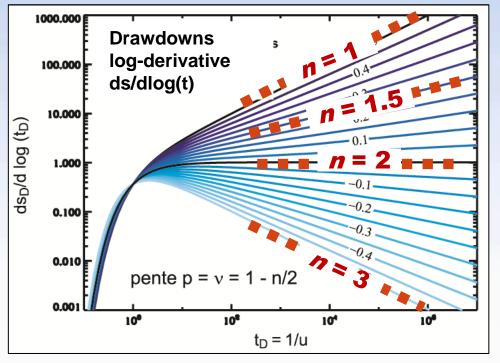
→ Radial

Non-radial flow regime

Barker's GRF theory (1988)

- Radial flow regime : A(r) ~ r
- Generalized Radial Flow (GRF) regimes : A(r) ~ rⁿ⁻¹

where *n* is the **flow dimension**, a **new** – non intrinsic – hydraulic parameter



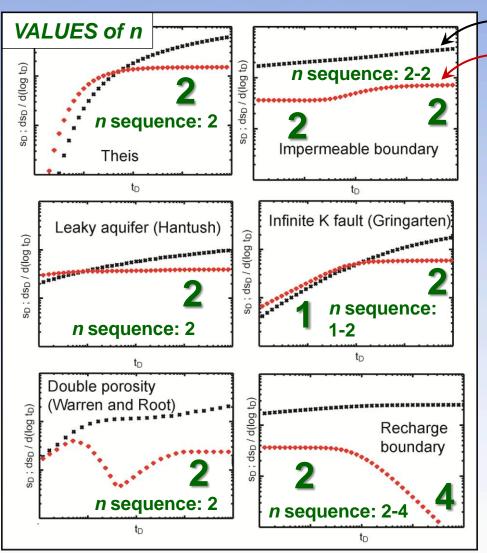
(for large u, i.e., large t or small $r \rightarrow$ at the source, from very short t)

Direct reading : *n* = 2 - 2 *p p* : slope

n = 2 : radial flow regime (plateau)

- $n \neq 2$: non-radial flow regime
 - *n* = 1 : linear
 - n = 3: spherical
 - *n non-integer* : fractional *n* = 1.5 : bilinear

Log-derivative diagnostic plots



Adimensional drawdown

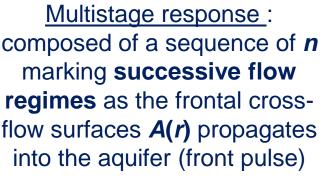
Adimensional drawdown log-derivative ds/dlog(t)

Choosing the adequate conceptual model prior to quantitative estimation of hydraulic properties using drawdown log-derivative curves

Diagnostic plots are **commonly used in the petroleum industry** for 3 decades, but still scarcely used in the hydrogeology field

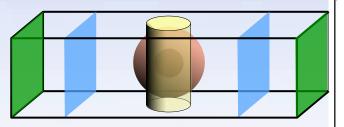
Most classical interpretative models are *radial* (n=2) \rightarrow poorly univoque Only univoqueness is provided by their *multistage* character

Multistage reponses



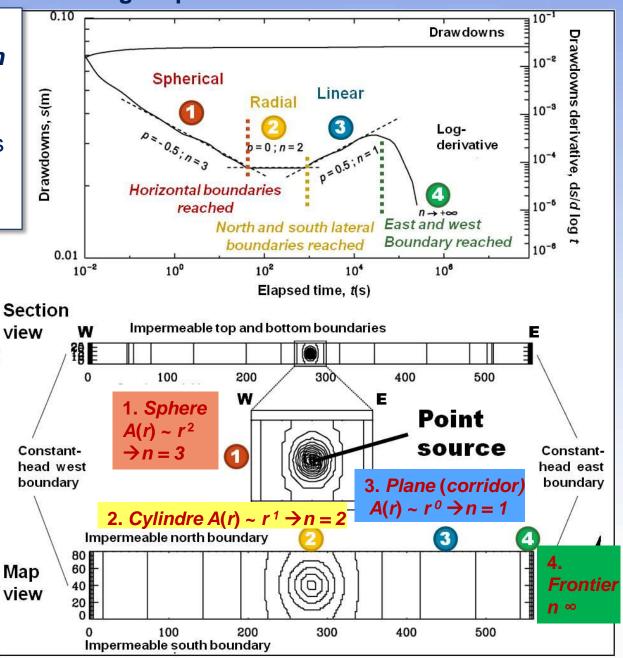
 $A(r) \sim r^{(n-1)}$

Example from a numerical simulation of a pumping test from a point source (homogeneous isotropic medium)



Evolution of n during the pumping test : *scan* of hydraulic conditions in the aquifer

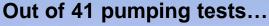
n sequence : 3 – 2 – 1 (sperical – radial – linear)

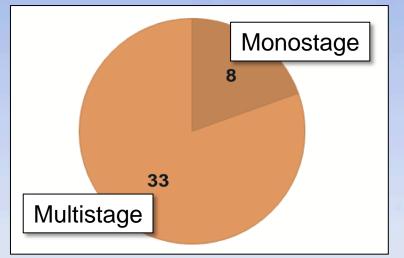


3D numerical flow simulation performed with Hydrogeosphere (Therrien and Sudicky, 1996)

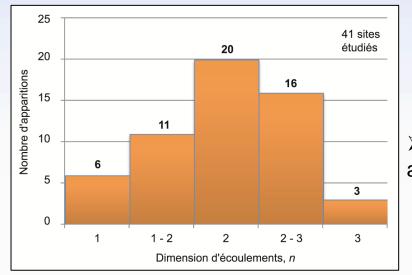
Occurrence of non-radial and multistage responses in nature

Pumping test database from GSC-Québec (Nastev et al, 2004) in the region of Mirabel, Qc

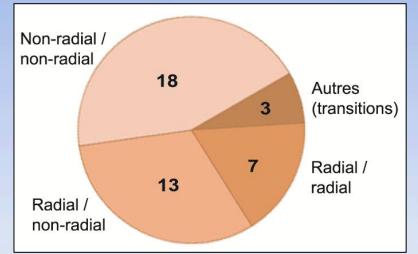




Multistage responses are largely dominant (radial/non-radial, non-radial/non-radial) : 80 %



8



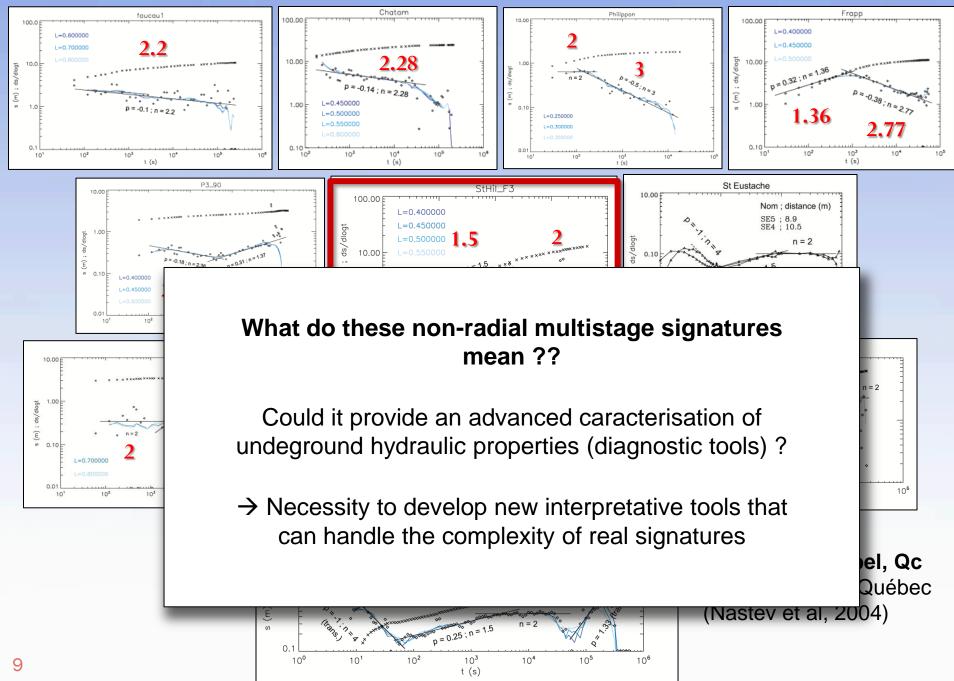
Non-radial responses occur in 83 % (34/41)

Less than 17% of cases (7/41) actually validate Theis postulates

> Specific values of n = 2, n = 1, n = 1.5 and n = 3 are more frequent than *any* values

See Rafini (2009) for details

Occurrence of non-radial and multistage responses in nature



Numerical flow modelling into idealized systems

Experimental approach in the aim of

- Constraining the hydraulic conditions in which non-radial and multistage responses occur
- Developing advanced diagnostic tools for pumping test interpretation

Configurations presented

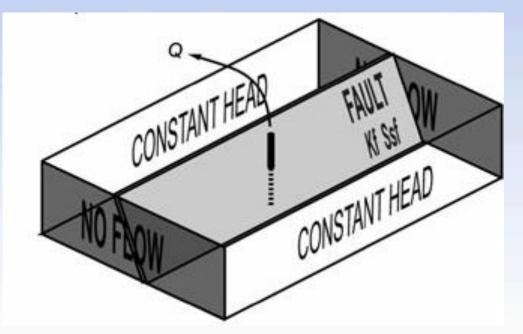
- Faulted aquifers (with various fault dip)
- Variable-thickness aquifers

Finite element codes : Geo-Slope and Hydrogeosphere

Faulted aquifer

Hydrogeosphere 3D flow modelling

Determining the **transient hydrodynamic interactions** between a non-impermeable matrix and a fault of any attitude, during a pumping test



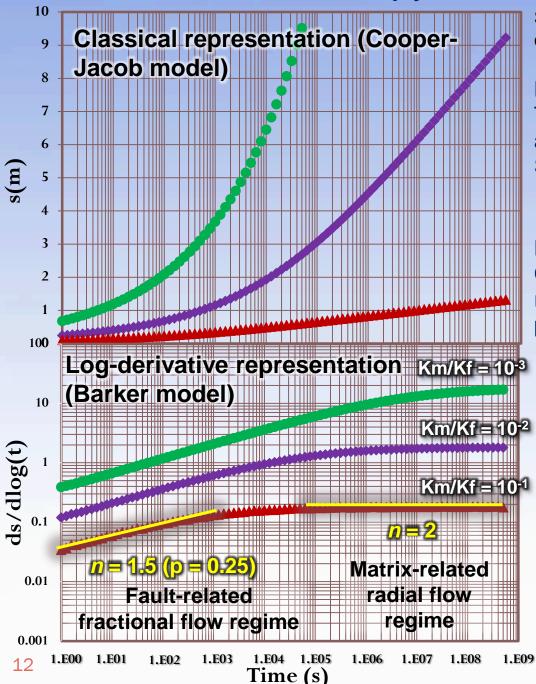
Steeply faulted aquifer

Matrix: K_m ; S_{sm} Fault: K_f ; S_{sf}

Top and bottom borders : no flow

Rafini et Larocque (2012)

Steeply faulted aquifer



Serial simulations with variable matrix conductivity and storativity

Early fractional flow regime

The aquifer response is governed by fault and matrix transient hydraulic interactions Slope $p = 0.25 \rightarrow n = 2 - 2p = 1.5$

→ Estimation of the fault transmissivity

Late matrix-related radial flow regime

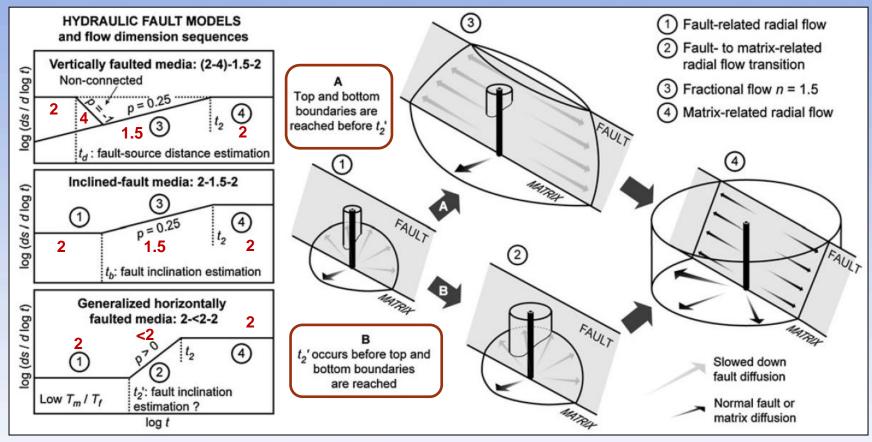
Cylindrical Theis-like conditions, the aquifer response is not governed by the fault properties anymore

 \rightarrow Estimation of the matrix transmissivity

Log-derivative plot allows

- A confident diagnostic of the presence of a conductive fault : caracteristic flow dimension sequence 1.5 – 2
- Estimating distinctly the fault and the matrix hydraulic properties (K, S) rather than bulk aquifer properties
- → Much more accurate knowledge of the aquifer behaviour

Several flow dimension sequences in faulted aquifers

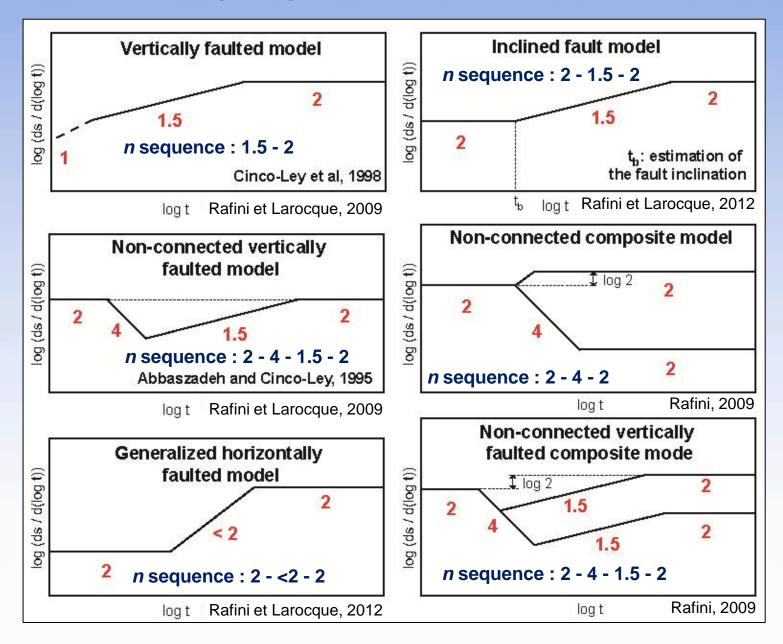


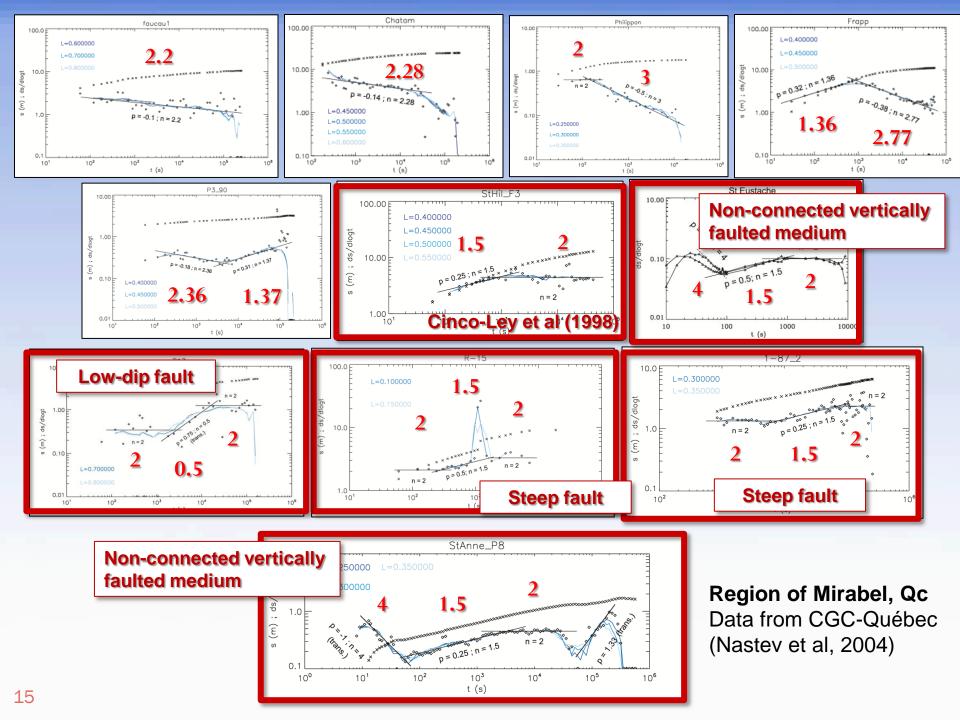
Rafini et Larocque, 2012

Each flow dimension time period corresponds to a specific flow regime as the front pulse propagates into the fault-matrix system

These *n* sequences are strictly controlled by fault and matrix geometrical and hydraulic properties \rightarrow diagnostic tool

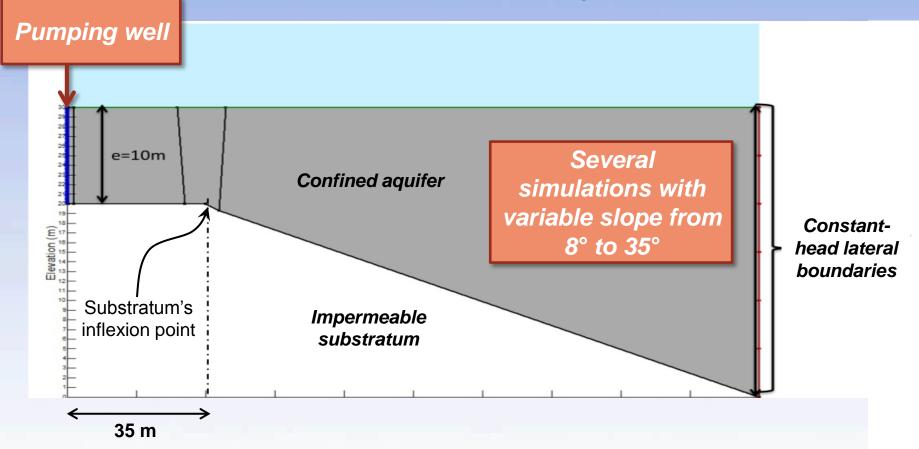
Multistage diagnostic plots for faulted aquifers





Variable thickness aquifer

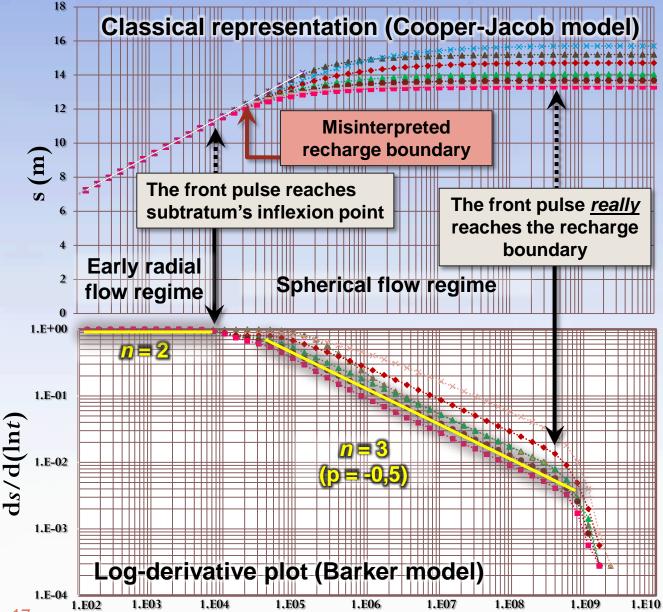
Geo-Slope 2D modelling



K = 5.10⁻⁵ m/s Ss = 1,6.10⁻³ m⁻¹ Q = 6,28.10⁻³ m³.s⁻¹

Variable thickness aquifer

Serial simulations with variable substratum inclination from 5° to 39 $^\circ$



time (s)

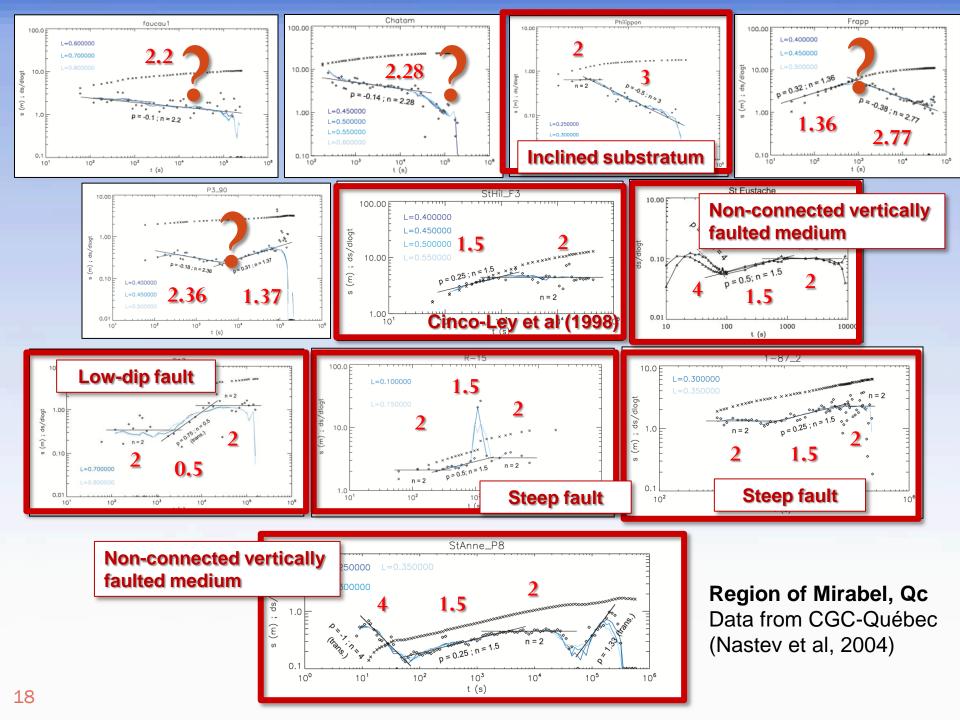
Early radial flow regime Theis-like regime before the front pulse reaches the substratum's inflexion point

Spherical flow regime Variable thickness aquifer signature on derivative-log plot : slope p = -0,5n = 2-2p = 3

Classical Cooper-Jacob representation:

No distinction between a recharge boundary (river) and the inclined substratum (that produces an increasing of the cross-flow area). Low sensitivity to fine variations of the drawdown regime.

• True recharge boundary is not visible



Synthesis - Conclusions

- Most pump test conventional interpretative models only account for (monostage) radial flow regime, which is actually of very limited occurrence in nature
- This rough approximation produces **erroneous interpretations** of heterogeneities like the substratum inclination as a recharge boundary
- Diagnostic plot approach along with Barker's flow dimension interpretations provide more accurate qualitative and quantitative diagnostic of hydraulic conditions as they account for finer drawdown variations in non-radial flow regimes
- Ongoing works at the University of Québec at Chicoutimi (UQAC) :
 - Anouck Ferroud's Ph.D. (in progress)
 - Numerical modelling for understanding physical conditions related to various flow dimensions sequences (non-radial and multistage) obtained in the nature
 - Field verification for constraining numerically-derived theoretical models : packers tests, tracer tests, geophysics (TDEM), structural survey, well-logging
 - Programming a software for pumping tests interpretation with these tools : SIREEN 1.0 (in progress)

Thank you

Contacts

Silvain Rafini : rsilvini@gmail.com

Romain Chesnaux : romain_chesnaux@uqac.ca