Fire History in the Strait of Georgia Lowlands

Sinead Murphy (SFU Master's Candidate), Dr. Marlow Pellatt, and Dr. Karen Kohfeld

Geological Society of America (GSA) Annual Conference – October 20th 2014

- Fire suppression = wildfire damage & hinders natural processes
- **Prescribed fire** to reduce fuel loads & restore vegetation
- Effective fire-based, ecological restoration requires fire history

 Mean Fire Return Interval (MFRI)
- Straight of Georgia lowlands \rightarrow 330 yr MFRI
- MFRI influenced by:
 - Temporal scale
 - Methodology
 - Local site factors

What is Fire History? Why is it Useful?

- Describes variability of fire disturbances over time
 - MFRI = average number of years between fires
- 1. Restoration direction & baselines
- 2. Role of humans & climate in shaping fire regimes
- 3. Public awareness to reduce resistance to active management

Why is this Study Area Interesting?

- Ecoprovince
 - Highly populated
 - Biodiverse
 - Ecosystem degradation
- Fire history informs restoration
 - Somenos Lake

History of Somenos Lake

Depth

495 cm

Core 5Core 4Core 3Core 2Core 1

0 cm

Dating the Core

 Age-depth model constructed with 12 ²¹⁰Pb, two ¹⁴C, & the Mazama tephra

Charcoal Accumulation Rate (CHAR)

- Charcoal extraction (1cm³ subsample of each 1cm of core)
- [Charcoal] = # charcoal particles ÷ volume
- CHAR = [Charcoal] x Sediment Accumulation Rate (SAR)
- CharAnalysis software models background and noise charcoal

Fire History

8

Global Climate and Human Influence

Mean Fire Return Interval

• MFRI = 330 yrs (174–512)

Comparing MFRI with other Studies

- Somenos Lake \rightarrow 330 yr MFRI (Murphy, 2014)
- Quamichan Lake \rightarrow 27 yr MFRI (McCoy, 2006)

Why does MFRI vary?

1. Temporal scale

Lake	Length of Record (yrs)	Bottom Age (cal yr BP)	Top Age (cal yr BP)	MFRI (yrs)
Somenos	4960	4904	-63.5	330
Quamichan	250	196.5	-53.5	27
Somenos (Truncated)	322	259	-63.5	81

Why does MFRI vary?

2. Methodology

- Sampling resolution & sediment accumulation rate (SAR)
- KOH breaks down ~ 12% more charcoal than $(NaPO_3)_6$

Lake	Sample Resolution (cm)	Average SAR over Record (cm/yr)	Length of Record (yrs)	Extraction Method
Somenos	1	0.1	322	5% (NaPO ₃) ₆
Quamichan	1	0.5	250	30% KOH

Why does MFRI vary?

3. Local site factors

- Stochastic ignitions, topography & fuel loads
- Connectivity to low elevation, south facing slopes

Implications for Restoration

- 1. Need multi-lake & -proxy analysis to verify MFRI
 - Chadsey lake
 - Utilize other fire history studies
- 2. MFRI provides context for choosing restoration goals & getting fire management programs off the ground
 - For long-term success, need to be flexible

Questions

Pacific Institute for Climate Solutions Knowledge. Insight. Action.

*

Parks Canada Parcs Canada