Radiolarian biodiversity dynamics through the Triassic and Jurassic: implications for proximate ¢
of the end-Triassic mass extinction

Addm T. Kocsis', Wolfgang KieSling? and Jézsef Palfy’

'MTA-MTM-ELTE Research Group for Paleontology and Department of Physical and Applied Geology, E6tvos University, Pdzmdny Péter sétdny 1/C, Budapest, H-1117 Hungary. E-mail: adamkocsis@caesar.elte.hu, palfy@nhmus.hu

‘GeoZentrum Nordbayern, Universitdt Erlangen-Nirnberg, LoewenichstralSse 28, D-91054 Erlangen, Germany. E-mail: wolfgang.kiessling@fau.de

Introduction

The Late Triassic—Early Jurassic
interval was a period of major
changes in the Earth system,
including the end-Triassic
extinction event and several

others of lesser magnitude. If

ocean acidification was a do-
minant cause of the extincti-
ons, radiolarians, as organis-
ms with a siliceous test, may
have been substantially less
affected than organisms sec-
reting calcium carbonate. On
the basis of Sepkoski’s (2002)
compendium, Hautmann et

fall within the background of
generally elevated Triassic ex-
tinction rates.

The Late Triassic—Early Jurassic
interval includes other, small-
er biotic and environmental
events, whose characteriza-
tion may be aided by studying
radiolarian diversity patterns.
Here we reassess radiolarian
turnover rates from the Trias-
sic to the earliest Cretaceous,
using a finer, substage-level
stratigraphic resolution in
the Late Triassic—Early Juras-
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Results

The finer stratigraphic resolu-
tion revealed that extinction
rates declined significantly
overtimeinthe Triassic—Juras-
sic interval (Spearman’s rank
correlation p = 0.67, p = 4.186
X 10* between the gap-fill-
er rates and mean time slice
ages). Origination rates also
declined over time (Spear-
man’s rank correlation with
time p=0.79, p =4.794 x 10°
with the gap filler rates) and
their overall trajectory is simi-
lar to that of extinctions.

The extinction rate of the late
Rhaetian slice is over the

97.5% critical value of the

achieved for the great majority
of macroinvertebrate occur-
rences we compare rates at the
stage level. Taxonomicrates of
radiolarians are higher than
those of benthic calcifiers,
among which bivalves exhibit
the lowest turnover rates. The
overall trajectories of origina-
tion rates of calcifiers are simi-
lar to those of radiolarians, but
only bivalves exhibit a similar
decline over time and radiola-
rians are the only group for
which extinction rates decline
significantly over the Triassic—-

Jurassic interval.

The end-Triassic mass extinc-

to only minor changes in the
results. The unique extinction
peak in the late Rhaetian is in-

dependent of the rate metric

applied, as all three methods
exhibit a distinct extinction
peak in this time slice.

To evaluate potential geogra-
phic biases we depicted the
geographic coverage of ra-
diolarian occurrence data (and

found this to be highly un-

even in the Late Triassic and
Early Jurassic, due to the scar-
city of preserved geotectonic
environments that are ame-
nable to yielding well-preser-

ved radiolarian assemblages.
Although spatial coverage is
limited before and after the
TJB, abrupt changes in the
proportions of covered regi-
ons did not create artifactu-
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al extinctions (for example,
in the late Norian or the Ox-
fordian), suggesting that the
lower representation of the-
se regions does not interfere
substantially with the extinc-
tion pattern observed at the
TJB, but rather indicates the
presence of genera with wide
geographic ranges.

Discussion
The distinct radiolarian ex-
tinction peak in the late
Rhaetian partially revises
the previously established
views (Kiessling and Danelian
2011). Several lines of eviden-
ce suggest that the radiolari-
an extinction pulse in the late
Rhaetian coincided with the
devastating mass extinction
enthic organisms, carbon
e perturbation: ~.

Multiple lines of evidence sug-
gest that global warming was

he primary trigger mechan-

Even if early Mesozoic radiola-
ians had different temperatu-
re tolerances, the consequen-
ces of global warming would
involve substantial poleward
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intensity, occurrence-based
counting and standardization
methods (Alroy 2010c, 2014)
are increasingly being used
to estimate fossil turnover
rates. We chose to apply the
modified three-timer metrics

N
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tion in terms of bin duration,

extinction rates and forward
smearing of  origination
rates. A recent modification
of the three-timer metrics
are the gap-filler equations

(Alroy 2014). Because these
require  the  three-timer

Radiolarian extinction rates calculated with multiple

(CR; Raup 1975), an approach
followed in this study. The
genus richness was estimated
by wusing the geometric
means of genus counts in the
individual subsampling trials
with the applied target quota

rum Subsampling (SQS; Alroy
2010a,b,c) with the targeted
quorum of 0.6, and by-list oc-
currences weighted (OW) sub-
sampling (Alroy et al. 2001),
with the same quota as for CR.

Radiolarian extinction rates. note the late Rhaetina spike.
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