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Two ~250 m.y. Phanerozoic "Pulses”
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® POST-OROGENIC BASIC EXTRUSIONS

® POST-OROGEMIC ACID AND BASIC EXTRUSIONS
® OROGENIC ACID INTRUSIONS

* PRE-OROGENIC BASIC EXTRUSIONS

Umbgrove (1947)



Early Advocates for Tectonic Episodicity

Holmes (1951); Wilson et al. (1960); Burwash (1963)
Orogenic episodicity in Precambrian fold belts

Holmes (1954); Gastil (1960)
Episodicity in continental crust formation

Voitkevich (1958); Vinogradov & Tugarinov (1962); Runcorn (1962);
Dearnly (1966)
Episodicity in radiometric age data

Sloss (1963)
Tectonic episodicity inherent in recognition of cratonic sequences



Sutton’s (1963) “Chelogenic Cycles”

(global-scale shield-forming events)

Called for an episodic clustering of continents

Rather than producing a supercontinent, cycle resulted in periodic recurrence
of two antipodal continental clusters, the assembly and breakup of which were
responsible for the record of orogenic episodicity

Cycle was thought to occur because small subcontinental convection cells
first resulted in continental clustering and orogeny in continental interiors, but
then coaslesced into larger cells that fostered continental breakup, orogenic
quiescence, and the later regrouping of the disrupted continental masses into

two new antipodal clusters

Cycle had periodicity of 750-1250 m.y. and had been repeated at least four
times during Earth history



Tectonic Episodicity and Plate Tectonics

Wilson (1966)
Wilson cycles of ocean opening and closure

Valentine and Moores (1970), Hallam (1974)
Tectonic cycles applied to evolutionary biogenesis

Mackenzie and Pigott (1981)
Episodicity in pattern of Phanerozoic sedimentary cycling

Meyer (1981)
Episodicity in distribution of ore-forming processes through time

Condie (1982)
Orogenic episodicity supported by increasingly precise radiometric ages



Two ~300 m.y. Phanerozoic Supercycles
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EVOLUTIONARY EVENTS

CONTINENTAL COLLISION
(mountain building events)

CONTINENTAL RIFTING
(basaltic dike swarms)

ICE AGES
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Supercontinent Cycle and Sea Level
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Depth of seawater on continental shelf
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Proposed Driving Mechanism
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Supercontinentality

Tectonic activity dominated by epeirogenic uplift as trapped mantle heat
accumulates beneath largely stationary supercontinent

Opening of back-arc basins and terrane formation expected at margins of
exterior (Panthalassic) ocean, now at its largest size

With sea level at its lowest elevation, terrestrial deposition enhanced
Sequestering of isotopically light carbon in non-marine and organic-rich
sediments, and heavy sulfur in evaporites, expected to produce a record of

low 813C and &3S in reciprocal marine platform reservoir

Massive extinctions expected to accompany loss of shallow marine habitat
Cold climates (potentially leading to continental glaciation) expected to develop

as CO, is removed from the atmosphere by weathering of large areas of
subaerially exposed continental crust



Supercontinent Breakup and Dispersal

Younging of world ocean floor through rifting and opening of new (interior)
ocean basins, coupled with subsidence of dispersing continental fragments,
should raise sea level to its maximum elevation

Collisional orogeny minimal, although terrane accretion expected on margins
of the exterior ocean

Rapid biotic diversification and enhanced preservation of platform sediments

with increasing high values of '3C and 434S should accompany continental
drowning

Warm, equable climates should develop as continental flooding allows
atmospheric CO, levels to build



Supercontinent Assembly

Accretionary and collision orogenesis should increase to a maximum

Global sea level should first rise and then fall as subduction consumes first
the old and then the young floor of interior oceans (opening and then closing
back-basins along their margins)

Active margin sedimentation should increase

Atmospheric CO, levels should fall, causing global climates to deteriorate



EVOLUTIONARY EVENTS

CONTINENTAL COLLISION
(mountain building events)

CONTINENTAL RIFTING
(basaltic dike swarms)

ICE AGES

|
3000

EUCARYOTES .
PORIFERANS j
METAZOANS | -
SKELETONS
«—t > —t P
n=10 n=8 n=7 n=9 n=6 -5 _|ENDOTHERMS
[ =  E— = _ I | Calcareous plankton
6 5 4 3 1 (Pangea)
[+ eined — — — _
— — Il = -1 = @
I I I I ] 1
2500 2000 1500 1000 500 0

Million years ago

Worsley et al. (1984, 1985)



EVOLUTIONARY EVENTS

CONTINENTAL COLLISION
(mountain building events)

CONTINENTAL RIFTING
(basaltic dike swarms)
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Kent Condie

Earth as an Evolving Planetary System
(2011)





