LATERAL GROWTH OF LATE PLEISTOCENE STROMATOLITES FROM WALKER LAKE (NEVADA) AND PROXY CONSTRAINTS ON ENVIRONMENTAL CHANGE
Initial observations of a stromatolite bed revealed a bowl-shaped carbonate framework composed of stacked, weakly laminated, vertical and horizontal petal-like structures with copious pore space. One laterally-oriented petal was taken off of the main structure and studied. Petrographical observations exhibit two types of alternating microfabrics and three transitions in microfabric. Both sparry crystal fans of calcite, and convex layers of fine micrite with occasional trapped crystals and fossils, were observed.
Calibrated 14C ages (IntCal13) for the proximal and the distal end of the stromatolite are 35,540 YBP and 33,580 YBP, respectively. Clumped isotope (D47)-based estimates of temperature steadily increase throughout most of this interval, from the beginning of accretion, to the middle of the structure. By the distal end, values are at their peak, and at the tip temperatures decrease again. D47-temperatures correspond to microfabric, with textural changes associated with evidence for climatic fluctuations.
We suggest the stromatolite formation may have been initiated during warmer intervals, induced by the chemical precipitation of calcite fans which served as a substrate for a biofilm growth. Microbial activity trapped the fine sediment and formed micrite. Colder conditions propagated fan precipitation. Microfabric alternation throughout the stromatolite records environmental change in the span of ca. 2000 years of Lake Lahontan history, likely in response to lake level fluctuations.