RESILIENCE AND STABILITY OF PERMO-TRIASSIC KAROO BASIN COMMUNITIES: THE IMPORTANCE OF SPECIES RICHNESS AND FUNCTIONAL DIVERSITY TO ECOLOGICAL STABILITY AND ECOSYSTEM RECOVERY
The first model assumes that populations exist in an energetic balance between consumption and predation. Communities are modelled as stochastic variants sampled from a space defined by species richness and functional diversity. Paleoenvironmental data from the DAZ indicate an increasingly seasonal, arid and drought-prone environment. The models were perturbed by simulated reductions of primary productivity. Results show that DAZ Phase 0 (Ph0) was a robust community resistant to low-moderate levels of perturbation with a well-defined collapse threshold. DAZ Ph1 and Ph2, however, exhibit highly variable responses and are significantly less resistant. LAZ similarly exhibits highly variable responses across minor variation of model configurations.
The second model assumes that communities are locally stable, i.e. minor perturbations are followed by asymptotic returns to equilibrium. During this return, however, communities can exhibit transient behavior during which perturbations can be greatly amplified. Amplification is likely to be important in unstable environments when the frequency of perturbations is shorter than the return time to equilibrium. Applying this model to DAZ and LAZ communities shows that the Karoo ecosystem became more limited in its responses to perturbation as the P/Tr boundary was approached, with Ph1 and Ph2 communities exhibiting very little transient behavior. LAZ in contrast exhibits increased transience.
The energetics and stability models are reconcilable in a history where the Karoo ecosystem became more ecologically stable as the extinction unfolded, yet more sensitive to cascading effects of species extinction and reductions of productivity. The Induan ecosystem was an unrecovered one, sensitive to both extinction and minor ecological disturbances.