2014 GSA Annual Meeting in Vancouver, British Columbia (19–22 October 2014)

Paper No. 81-1
Presentation Time: 1:00 PM

ANCIENT AND MODERN COMMUNITIES AS RECIPROCAL ANALOGUES OF PERSISTENCE AND STABILITY


ROOPNARINE, Peter, Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Dr, Golden Gate Park, San Francisco, CA 94118, proopnarine@calacademy.org

Paleocommunities are spatio-temporally averaged communities structured by biotic interactions and abiotic factors. The best data on paleocommunity structures are estimates of species richness, number of biotic interactions and the topology of interactions. These provide insights into paleoecological dynamics if modern communities are used as analogs; e.g., the recent lionfish invasion of the western Atlantic is the first modern invasion of a marine ecosystem by a high trophic-level predator and serves as an analog for the invasion of paleocommunities by new predators during the Mesozoic Marine Revolution. Despite the invader's broad diet, it targets very specific parts of the invaded food web. This will lead to non-uniform escalation on evolutionary timescales.

Theoretical ecology provides a rich framework for exploring dynamics of community persistence. Persistence--the stability of species richness and composition on geological timescales--is central to paleoecology. Ecological stability, a community's return to stability after perturbation, is not necessary for geological persistence. However, it does dictate a community's response to perturbation, and thus a species' persistence or extinction. What then is the relationship between paleoecological richness/composition and ecological stability? How do communities respond to losses of species richness or ecological function? Questions of stability and diversity loss are addressed with an examination of transient responses and species deletion stability analyses of end-Permian terrestrial paleocommunities of the Karoo Basin. Transience is measured as the degree to which a perturbation is amplified over ecological time, even as a community returns asymptotically to stability. Transience during times of frequent perturbation, as during times of environmental crises, decreases the likelihood of a persistently stable community. Species deletion stability measures the dynamic response of a community to the loss of single species. It is an open question whether communities become more vulnerable or more resistant during environmental crises. That process, which has occurred repeatedly in the geological past, is important to the fate of threatened modern communities.

Handouts
  • Roopnarine-04.pdf (26.1 MB)