GEOCHEMICAL CHARACTERIZATION OF GROUNDWATER IN AN AREA OF CONTINUOUS PERMAFROST ADJACENT TO THE GREENLAND ICE SHEET, KANGERLUSSUAQ, WEST GREENLAND
Isotopic (d18O, d2H, 3H, d34S-d18OSO4, 87Sr/86Sr, d37Cl and d81Br) and geochemical tools were used to compare the impact of mixing and water-rock interaction to cryogenic processes such as cryogenic concentration and solute exclusion during permafrost formation. Isotopic characterization of fracture minerals, crush and leach and out diffusion were also used to determine water-rock interaction and to obtain estimates of porewater composition to further define these end members.
Groundwater in the bedrock beneath the margin of the ice sheet has an isotopic signature (d18O/ d2H) similar to the enriched end of the range of isotopic values observed for regional meltwaters. Recharging glacial meltwaters interact with both bedrock and fracture minerals, evolving from dilute Ca, Na, K-HCO3 type waters to brackish Ca-Na-SO4 waters. Based on the d34S/d18O and 87Sr/86Sr values of the groundwater and fracture fillings, the chemistry is dominated by dissolution of gypsum and other sulphate-bearing mineral phases found as fracture infillings. The extensive presence of gypsum, a highly soluble mineral, below 300 meters in the DH-GAP04 core suggests that the groundwater system below this depth has maintained a degree of stability during, and beyond, the Pleistocene.