The Fluvial Sedimentology of Pennsylvanian Sandstones in the Illinois Basin

Nathan D. Webb and James L. Best

Outline

Background

- Pennsylvanian oil production
- Stratigraphy & geologic setting
- Study area
- Methods
 - Using geophysical logs & core
- Results
 - Comparing three channel deposits
- Implications

Pennsylvanian oil production

- Southeastern Illinois
 - Early development
 - Continued production
 - CO₂ EOR and storage possibilities
 - Abundant data
 - Well logs
 - Core

Stratigraphy

Lower Pennsylvanian
Caseyville Fm.
Tradewater Fm.
Largely sandstones and shales
Sub-Pennsylvanian unconformity

Methods

Geologic setting

Outline

Background

Method

Sub-Pennsylvanian Unconformity

Chesterian subcrop SW trending paleovalleys 134 m of relief Overprinted on structural features

From Bristol & Howard 1971

Outline

Background

Methods

Results

Channel fill sediments

Background

Channel fill sediments

Outline

Background

Viethods

Results

Objectives of this talk

- Three subsurface examples
- Caseyville and Tradewater Formations
- Comparison of observed facies
- Implications for basin sedimentation and oil reservoirs

Study area

- Three subsurface examples
- Areas with dense log and core control
- Each sandstone is an oil reservoir

Methods

Cross section

Diagrammatic N-S Cross section showing stratigraphic position of three channels Core was examined from each channel

Partlow channel

- Tradewater FormationDimensions
 - 2.5+ km long
 - 1 km wide
 - 1.5-30 m thick
 - W/T = 33
- NE-SW trend8 Cores

Background

Methods

Results

Partlow channel - facies						
Facies	Description	Interpretation			A.	
FI	Silty shale with occasional beds of very-fine sandstone; ripple bedded; laminated	Overbank			the state	
Fsc	Fine laminated shale	Floodplain or estuarine mud			1	
PS	Fine to medium grained sandstone; weak pedogenic features; rootlets; disturbed bedding; carbonaceous fragments	Paleosol	4			
Sp	Fine to medium grained sandstone with planar crossbeds; common soft sediment deformation; siderite clasts along bed set surfaces	2D-3D Dunes				
Sr	Fine to medium grained sandstone with rippled bedding	Ripples				
Sm	Medium to coarse grained sandstone with massive bedding; can be calcareous	Mass flow (?)				

Outline

Background

Methods

Results

Hardinville channel

- Caseyville FormationDimensions
 - 5 km long
 - 0.8 km wide
 - 1.5-14 m thick
 - W/T = 18
- NE-SW trend3 Cores

Modified from Howard & Whitaker 1988

Background

Methods

Results

Robins channel

- Tradewater FormationDimensions
 - 3+ km long
 - 1.1 km wide
 - 5-50 m thick
 - W/T = 22
- NE-SW trend18 Cores

Background

Methods

Results

Robins channel - facies

Facies	Description	Interpretation
FI	Interbedded shale and silty very-fine grained sandstone; ripple bedded; rhythmic; few bidirectional ripples; weakly bioturbated; sideritized bands	Tidally influenced overbank or estuarine muds
Fsc	Fine laminated shale	Floodplain or estuarine mud
Sm	Medium grained sandstone with massive bedding	Mass flow (?)
Sp	Medium to coarse grained sandstone with planar crossbeds; common soft sediment deformation; siderite clasts along bed set surfaces	2D-3D Dunes
Gm	Crudely bedded gravel or gravelly sandstone; contains coal, shale, siderite, and lithic clasts; siderite or calcite cemented matrix	Lag

Outline

Background

Methods

Results

Channel comparison

Outline

Backgrour

Methods

Results

Channel comparison

Outline

Background

Methods

Results

Channel interpretations

- Regional three dimensional changes
 - Tidal influence wanes stratigraphically higher and updip
- General fining upward trend across channels
 Narrow sheets
 - Becoming slightly broader through time less confined to bedrock valleys
- Possibly formed through multiple episodes of deposition

Implications

 Channel dimensions
 Arrangement of architectural elements

Results

MULTISTORY CHANNEL BODIES

ground

Implications

Potential for additional studies of known and unknown channels in the area

Outline

Methods

Results

Summary

- Pennsylvanian channels are common in southeastern Illinois and are a resource
- Changes in channel fill and morphology through time give clues as to how the basin filled
- Carboniferous basins with similar deposits exist all over the world

Garden of the Gods, Southern Illinois

Brimham Rocks, North Yorkshire, England

The Fluvial Sedimentology of Pennsylvanian Sandstones in the Illinois Basin

Nathan D. Webb and James L. Best

