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Bouguer Gravity Anomaly Average velocity 0-35 km
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Questions

o What the heck is the density?
= Ain’t just like the velocity
= Ain’t just like the gravity

o Does lithospheric density inform riit kinematies?
— Aciive vs. Passive
= Magma source depih
o How does (lower) crustal density compare to the
High Plains and Colorado Plateau?
= Proterozoic regions with similar Paleozoic sirata
= Were all at sea level at 70 Ma. Not anymeore,



Passive Rifting cross section-------4--------------------——-- Map View
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Mid-Continent Rift Magma Variation Mid-Continent Rift Magma Variation
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Worked pretty well in the western US...

(a) Residual Topography +/- 2 sigma (c) Observed—Predicted Gravity
-124" -120" -116" -112" 108" -104° ~124° -120° 116" —-112° -108° -104°
] [ ] ] [ ] ; )

' mGal

-1.0 -0.5 00 02 04 -60 -30

0 30 60
Levandowski et al., JGR 2014



Butnolfailed rifts in western US.
mheliesstallotofibasalltiinithe IMICR, does that

HoWwklbouijuxtapoesitiontafiiViesoproterozaic,
Paleoproterzois, anel ArcNEen ok S

« Basalt ~200 kg/ m” denser than predlcted

Archean. reglons or rlft-reiatf Tmodlﬁcatmn

A Mt Jqsephlne



Velocity-Density Fail: Reds need to be denser

Initial Gravity Residual Initial Topography Residual
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Improving Density Estimate
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Total density adjustments

Initial Gravity Residual Initial Topography Re:

0 40 80 120 160 200
Density deviation, kg/m3




Final Residual
Final Topography Residual Final Gravity Residual
96" 94" -92° -96° -94° -92°




Total density adjustments

a) Mean crustal adjustment b) Mean mantle adjustment

kg/m3

-15




Uncertainty (of mean)

c) Standard dev. of crustal mean d) Standard dev. of mantle mean

-96° -94° -92° -96° -94° -92°




Final Densities

a) Mean crustal density b) Mean mantle density
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Increase in basalt NE along strike and with depth
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Increase in basalt NE along strike
Away from Euler Pole

(Chase and Gilmer, 1973)
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Total density adjustments

b) Mean mantle adjustment

kg/m3
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Total density adjustments

b) Mean mantle density
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Total density adjustments

b) Mean mantle adjustment
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Passive Rifting cross section-------4--------------------——-- Map View
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Comparison to the western US

Jackass Pass,
Wind Rivers, WY

Lake Superior, Isle Royale in the distance



Quick aside
Remember these?

(a) Residual Topography +/- 2 sigma (c) Observed—Predicted Gravity
-124° -120° -116° -112° -108° -104° -124° -120° -116° -112° -108" -104’
] [ 1 ) [ W )

0.0 0.2 04 60
Levandowski et al., 2014 JGR



e) Mean Crustal Density, 0-10 km f) Mean Crustal Density, 10-20 km
-124° -120° -116" -112° -108" -104° -124° -120° -116" —-112° -108" -104°

Density |Relief

difference

0-10 -26kg/ -82m
; ‘ km m3,
e — ———m o~ 10-20 38kg/ 118 m

I I I I
2400 2450 2500 2550 2600 2650 2700 2650 2700 2750 2800 2850 k 3

g) Mean Crustal Density, 20-30 km h) Mean Crustal Density, 30 km to Moho

124" -120° 116" 112" 108" 104" 124" -120" 116" 112 108" 104" 20-30 53 kg/ 165 m
61kg/ 191m
m3

392 m
474 m

| | Levandowski, 2014
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Why? Lower Crustal Hydration?

Upifting contnent

B. Laramide Orogeny (-60 Ma)

“Uplift during the Laramide orogeny is attributed to a combination of crustal
thickening in the Rocky Mountain area, regional unloading caused by the
younging of the Farallon slab AND

LITHOSPHERIC DE-DENSIFICATION OWING TO THE CREATION OF
LOW-DENSITY HYDROUS MINERALS”
Humphreys et al., 2003




Role of
hydration in
elevating
topography of
and heart
rates on the
Colorado
Plateau

Lesley Butcher
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Grand Canyon,




QUESTION #1: Did the lower crust undergo large-scale hydration?

K:SPAR: 7

-

 — 200|.|m

BE| AlteredPlag6

Butcher, 2013 MS CU-Boulder



QUESTION #2: When did this hydration occur?

— ()|
BEI

U-Pb dating of secondary monazites by SIMS will help to constrain the timing of the metasomatic event. Was
it Laramide-related, or Paleo-Proterozoic?

Butcher, 2013
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There’s no comparison!

Note change in color scale from previous density slides

M tal Density, 0-10 k b) M tal Density, 10-20 k . .
(8) Mean Crustal Density, 0-10 km (b) Mean GCrustal Density m e) Mean Crustal Density, 0-10 km f) Mean Crustal Density, 10-20 km
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Effect on topography

Midcontinent | Colorado | Density difference, | High Density
Plateau |Topography Plains difference,
Topograph

0-10 km 2681 kg/m? 2596 85 kg/m3,265m 2570 111 kg/m3,

kg/m3 kg/m3 347 m
10-20 2805 kg/m3 2752 53 kg/m3, 175 m 2790 15 kg/m3,
km kg/m?3 kg/m3 47 m
20-30 2823 kg/m3 2767 85 kg/m3, 267 m 2820 33 kg/m3,
km kg/m?3 kg/m3 103 m
30-40 2949 kg/m3 2823 126 kg/m3, 394 2884 65 kg/m3,
km kg/m3 m kg/m3 203 m
Total 1101 m 700 m
Lower 836 m 353 m

Crust



Conclusions

technique works

* Relict (deep magma source

difference generates hundreds
of meters of =<' in the Plains and Colorado Plateau

7 ngth , Thank.s to Crangones Kevm Mahan and Lang Farmer.
2 Ontariofrom 4 Research supported by University of Colorado
Border Route Trail * i o , i research assistantships to WL and LB.



