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Why? Lower Crustal Hydration? 

“Uplift during the Laramide orogeny is attributed to a combination of crustal 
thickening in the Rocky Mountain area, regional unloading caused by the 
younging of the Farallon slab AND 
 

LITHOSPHERIC DE-DENSIFICATION OWING TO THE CREATION OF  
LOW-DENSITY HYDROUS MINERALS” 

Humphreys et al., 2003 
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QUESTION	
  #1:	
  Did	
  the	
  lower	
  crust	
  undergo	
  large-­‐scale	
  hydraVon?	
  	
  

Butcher,	
  2013	
  MS	
  CU-­‐Boulder	
  



QUESTION	
  #2:	
  When	
  did	
  this	
  hydraVon	
  occur?	
  

U-Pb dating of secondary monazites  by SIMS will help to constrain the timing of the metasomatic event. Was 
it Laramide-related, or Paleo-Proterozoic? 

aln	
  

Butcher,	
  2013	
  



Butcher,	
  2013	
  



Denver	
  is	
  the	
  mile	
  high	
  city.	
  
Were	
  the	
  Plains	
  hydrated	
  too?	
  

Wichita	
  Mtns.	
  
NWR,	
  OK	
  



LOCATIONS of documented and postulated 
hydrated mantle xenolith localities 
 



−96˚ −92˚

40˚

44˚

48˚

(a) Mean Crustal Density, 0−10 km
−96˚ −92˚

40˚

44˚

48˚

2420

2510

2600

2690

2780
kg/m3

−96˚ −92˚

(b) Mean Crustal Density, 10−20 km
−96˚ −92˚

2600

2675

2750

2825

2900
kg/m3

−96˚ −92˚

40˚

44˚

48˚

(c) Mean Crustal Density, 20−30 km
−96˚ −92˚

40˚

44˚

48˚

2700

2750

2800

2850

2900

2950
kg/m3

−96˚ −92˚

(d) Mean Crustal Density, 30 to 40 km
−96˚ −92˚

2750

2815

2880

2945

3010
kg/m3

−124˚ −120˚ −116˚ −112˚ −108˚ −104˚

32˚

36˚

40˚

44˚

48˚

e) Mean Crustal Density, 0−10 km
−124˚ −120˚ −116˚ −112˚ −108˚ −104˚

32˚

36˚

40˚

44˚

48˚

2420 2510 2600 2690 2780
kg/m3

CP
H

igh Plains

−124˚ −120˚ −116˚ −112˚ −108˚ −104˚

f) Mean Crustal Density, 10−20 km
−124˚ −120˚ −116˚ −112˚ −108˚ −104˚

2600 2675 2750 2825 2900
kg/m3

CP

H
igh Plains

−124˚ −120˚ −116˚ −112˚ −108˚ −104˚

32˚

36˚

40˚

44˚

48˚

g) Mean Crustal Density, 20−30 km
−124˚ −120˚ −116˚ −112˚ −108˚ −104˚

32˚

36˚

40˚

44˚

48˚

2700 2750 2800 2850 2900 2950
kg/m3

CP

H
igh Plains

−124˚ −120˚ −116˚ −112˚ −108˚ −104˚

h) Mean Crustal Density, 30 km to Moho
−124˚ −120˚ −116˚ −112˚ −108˚ −104˚

2750 2815 2880 2945 3010
kg/m3

CP

H
igh Plains

There’s	
  no	
  comparison!	
  	
  
Note	
  change	
  in	
  color	
  scale	
  from	
  previous	
  density	
  slides	
  



Effect	
  on	
  topography	
  
 	
   Midcontinent	
   Colorado 

Plateau	
  
Density difference, 
Topography	
  

High 
Plains	
  

Density 
difference, 
Topography	
  

0-10 km	
   2681 kg/m3	
   2596 
kg/m3	
  

85 kg/m3, 265 m	
   2570 
kg/m3	
  

111 kg/m3, 
347 m	
  

10-20 
km	
  

2805 kg/m3	
   2752 
kg/m3	
  

53 kg/m3, 175 m	
   2790 
kg/m3	
  

15 kg/m3, 
47 m	
  

20-30 
km	
  

2823 kg/m3	
   2767 
kg/m3	
  

85 kg/m3, 267 m	
   2820 
kg/m3	
  

33 kg/m3, 
103 m	
  

30-40 
km	
  

2949 kg/m3	
   2823 
kg/m3	
  

126 kg/m3, 394 
m	
  

2884 
kg/m3	
  

65 kg/m3, 
203 m	
  

Total	
    	
    	
   1101 m	
    	
   700 m	
  
Lower	
  
Crust	
  

836	
  m	
   353	
  m	
  

Depth 
Range	
  
	
  

Density 
difference	
  

Relief	
  

0-10 
km	
  

-26 kg/
m3, 	
  

-82 m	
  

10-20 
km	
  

38 kg/
m3	
  

118	
  m	
  

20-30 
km	
  

53 kg/
m3	
  

165	
  m	
  

30-40 
km	
  

61 kg/
m3	
  

191	
  m	
  

Total	
   392	
  m	
  
Lower	
  
Crust	
  

474	
  m	
  



Conclusions	
  
•  This	
  technique	
  actually	
  works,	
  even	
  in	
  the	
  toughest	
  
place	
  imaginable	
  

•  Ri3	
  probably	
  passive	
  
•  Relict	
  deple1on	
  preserved	
  (deep	
  magma	
  source	
  
depth?)	
  

•  Lower	
  crustal	
  density	
  difference	
  generates	
  hundreds	
  
of	
  meters	
  of	
  relief	
  in	
  the	
  Plains	
  and	
  Colorado	
  Plateau	
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