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Note: the glaciolacustrine silts of the last Lake Missoula phase are inset into large gravel bedforms and bars of one or more earlier phases
of the lake.
Purposes
- Describe detailed stratigraphy of lake-bottom silts deposited in
Pr evious wor k the last phase of glacial Lake Missoula

- Document nature of recognized exposure surfaces

Detailed descriptions of a complete section recording initial trans- _ Attempt correlation of exposure surfaces in upper reach of Clark

gression to final regression have been published for only one local -

. ) : : Fork River

ity, the Ninemile section (Chambers, 1971; Hanson et al., 2012).

Interpretations of these and partial sections along the Flathead

River (Levish, 199_7) gnd the Rall_ line section in Missoula Valley S gn ificance

have come to conflicting conclusions on whether one, afew, or _ o _
multiple dozens of lake stands are represented in the silt sections - These sections are only descriptions of exposure surfacesin the
(Hanson et al., 2012). lake basin

- Do exposure events at different elevations reflect draining, or
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- vertical penetration of ~40 cm
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only lake-lowering?
- Correlations among multiple sections are required for understand-
ing the lake-level history

Conclusions

1) Thelake filled to within ~100 m of full pool 9-13 times during the latest impoundments,

2) Lake level likely decreased, and frequency of |ake-lowering increased, over time,

3) Some outflows were sufficiently strong to cause minor channeling,
4) However, basal shear stresses were weak enough to preserve silts over broad areas

5) The last phase of glacial Lake Missoula produced much weaker flood events than the
earlier phase of lakes, which were responsible for large bars preserved along the drainages.
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ABSTRACT

Previous workers proposed that fine-grained glaciolacustrine sediments deposited
In the last phase of Pleistocene glacial Lake Missoula represent up to 80 filling and
draining cycles. Proposing an accurate lake-level history requires correlating multi-
ple stratigraphic sections that record initial transgression to final regression.
Although cyclic sedimentation may suggest filling and draining cycles, subaerial
exposure surfaces within the glaciolacustrine section is clear evidence for lake-
level lowering. Correlation between sections in the basin is required to differentiate
between full and partial 1ake drainage, as deposits range in elevations between the
outlet at ~660m and the highstand water elevation of ~1280 m.

Outcrops near Garden Gulch, in the upper reaches of the Clark Fork River valley,
allow documentation of alake-level history near a highstand position, full-pool
location. Thissection isat 1170-1183 madl, thus the lake-level history for this site
reflects the number of times the lake reached within ~100 m of full pool. The sec-
tion contains glaciolacustrine sand, silt, and clay with exposure surfaces delineated
by paleosols and by periglacial features, such as sand wedges, ice-wedge casts, and
cryogenically disrupted bedding. Thin massive silt (loess?) and fining-upward
seguences of glaciolacustrine sediments overlie exposure surfaces. At least 8 such
seguences are recognized; 4 additional |ake-lowerings have equivocal evidence,
such as coarsening-upward sequences in massive silts. Along 5 of the exposure sur-
faces, currents were capable of carrying angular cobble-sized clasts from nearby
bedrock outcrops across the exposed lakebed during or after the lake-lowering
events. The gravel was then periglacially modified.

Optical dating of two quartz sand samples, from near the base and top of the sec-
tion support correlation of the Garden Gulch section to those in the Missoula area,
80—100 km downstream. Correlations of stratigraphic sections suggest 8-12 |ake-
level lowerings of >200-300 m from late deep-lake phases. Sections near Missoula
record 34 lake-level lowering events, suggesting many partial fillings during most
|ake cycles. Whether the cycles represent complete or only partial |ake-drainage
requires further correlations between deep-lake and shallow-lake positions.
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