Structurally-controlled hydrothermal diagenesis of Mississippian reservoir rocks exposed in the Big Snowy Arch, central Montana

Sarah Jeffrey Montana State University Department of Earth Sciences

Geological Society of America Rocky Mountain/ Cordilleran Section Meeting Session No. 36, T7, Paper No. 36-3 – Wednesday, May 21, 2014

Applications for CO₂ Sequestration Technologies

Importance of Carbon Sequestration Projects

Carbon Dioxide Emissions

- CO₂ accounts for 64% of emissions contributing to the greenhouse effect
- Since industrialization, atmospheric CO₂ levels have risen from 280 ppm to 360 ppm
 - The combustion of coal comprises 50% of energy generation in the United States, and 25% globally

Carbon Capture and Storage

- Techniques:
 - Collect CO₂ from point sources
 - Transport it as a supercritical fluid to an injection site
 - Pump fluid into geologic storage reservoirs
- Research:
 - Characterize the reservoir for structures that act as a barrier or conduit to subsurface fluid flow

(modified from IPCC, 2005)

Statement of Problem and Research Objectives

- What structures within the Big Snowy Mountains serve as an analog to other carbon sequestration sites, and at what scales of observation?
- What is the stratigraphic distribution of hydrothermal structures, such as breccia pipes?
- How does brittle (tectonic) deformation affect reservoir properties for CO₂ sequestration applications? To what extent does hydrothermal diagenesis affect porosity and permeability?
- Do hydrothermal breccia pipes serve as a conduit or as a barrier to fluid flow in the subsurface?

- What structures within the Big Snowy Mountains serve as an analog to other carbon sequestration sites, and at what scales of observation?
- What is the stratigraphic distribution of hydrothermal structures, such as breccia pipes?
- How does brittle (tectonic) deformation affect reservoir properties for CO₂ sequestration applications? To what extent does hydrothermal diagenesis affect porosity and permeability?
- Do hydrothermal breccia pipes serve as a conduit or as a barrier to fluid flow in the subsurface?

- What structures within the Big Snowy Mountains serve as an analog to other carbon sequestration sites, and at what scales of observation?
- What is the stratigraphic distribution of hydrothermal structures, such as breccia pipes?
- How does brittle (tectonic) deformation affect reservoir properties for CO₂ sequestration applications? To what extent does hydrothermal diagenesis affect porosity and permeability?
- Do hydrothermal breccia pipes serve as a conduit or as a barrier to fluid flow in the subsurface?

- What structures within the Big Snowy Mountains serve as an analog to other carbon sequestration sites, and at what scales of observation?
- What is the stratigraphic distribution of hydrothermal structures, such as breccia pipes?
- How does brittle (tectonic) deformation affect reservoir properties for CO₂ sequestration applications? To what extent does hydrothermal diagenesis affect porosity and permeability?
- Do hydrothermal breccia pipes serve as a conduit or as a barrier to fluid flow in the subsurface?

- What structures within the Big Snowy Mountains serve as an analog to other carbon sequestration sites, and at what scales of observation?
- What is the stratigraphic distribution of hydrothermal structures, such as breccia pipes?
- How does brittle (tectonic) deformation affect reservoir properties for CO₂ sequestration applications? To what extent does hydrothermal diagenesis affect porosity and permeability?
- Do hydrothermal breccia pipes serve as a conduit or as a barrier to fluid flow in the subsurface?

Hydrothermal Fluid Migration and Brecciation Mechanisms

Hydrothermal solution permeates into limestone host as a halo of replacement dolomite preceding brecciation at the fault tip

Hydraulic fracturing and brecciation occur in the dolomitized halo as slip occurs along the master thrust

Explanation:

Dolomite

Limestone

Episodic Seismicity

Vertical hydraulic fracturing and brecciation continue in the dolomitized plume with upward propagation of the fault tip

Marker Bed

Fault

Hydrothermal:

- Aqueous solutions that are warmer to hotter relative to the ambient environment
- Reasons for variations in fluid properties:
 - Rapid introduction of fluids to the host rock prior to reequilibration to ambient conditions

(c)

Stage 3:

Hydrothermal solution permeates into limestone host as a halo of replacement dolomite preceding brecciation at the fault tip

Hydraulic fracturing and brecciation occur in the dolomitized halo as slip occurs along the master thrust

Explanation:

Dolomitized

Marker Bed

Episodic Seismicity

Vertical hydraulic

brecciation continue in

the dolomitized plume

with upward propagation

fracturing and

of the fault tip

Fault

- Stage 1:
 - Fluids progressively permeate into the fault tip
 - Pore space of rocks peripheral to the fault is preferentially filled with fluid
 - Results in a zone of matrix dolomitization or mineralization

(c)

Stage 3:

Episodic Seismicity

Vertical hydraulic

fracturing and

Hydrothermal solution permeates into limestone host as a halo of replacement dolomite preceding brecciation at the fault tip

Hydraulic fracturing and brecciation occur in the dolomitized halo as slip occurs along the master thrust

Explanation:

Dolomitized

Dolomite

of the fault tip

brecciation continue in

the dolomitized plume

with upward propagation

Marker Bed

- Fault

Stage 2:

Fault failure results in an abrupt drop in pressure and loss of CO₂ by effervescence

Brecciation occurs along with the precipitation of coarser saddle dolomite, overprinting the earlier matrix dolomitization

Hydrothermal solution permeates into limestone host as a halo of replacement dolomite preceding brecciation at the fault tip

Hydraulic fracturing and brecciation occur in the dolomitized halo as slip occurs along the master thrust

Explanation:

Dolomitized

Dolomite

(c) Stage 3: Episodic Seismicity

Vertical hydraulic fracturing and brecciation continue in the dolomitized plume with upward propagation of the fault tip

- Fault

Stage 3:

Cycle repeats

 itself as episodic
 fault reactivation
 continues,
 resulting in a
 halo of replacive
 dolomite
 surrounding the
 fault

 Fault tip continues to propagate upsection

Tectonic and Stratigraphic Settings of Central Montana

Big Snowy Mountains Field Area

- The BSM lie within the Central MT Trough, a Mesoproterozoic rift basin that formed c. 1.4 Ga
- Fault zones associated with the rift have been reactivated by adjustment along basement faults

- WY Province (Basement): Late Archean fine-grained schists and gneisses that exhibit a strong foliation
 - Foliations strike W-NW and dip steeply
 - Basement inherited this structural grain, which later influenced middle to late Proterozoic fracture orientations
- Paleoproterozoic Suture Zone:
 - NE-trending suture zone of basement anomalies
 - Separates the Wyoming and Medicine Hat provinces

(modified from Nelson, 1993)

Structural Setting of the Big Snowy Mountains

 The Laramide orogeny upwarped the Central MT Trough and structurally inverted topographic features

- N40°E to N50°E shortening
- Shortening accommodated by strike-slip displacement perpendicular to slip along major thrust faults
- Favorably reactivated basement structures
 - ENE, E, or ESE structures reactivated as left-lateral oblique-slip faults
 - SE, SSE, or NS structures reactivated as right-lateral low-angle dip-slip reverse faults

(modified from Brown, 1993)

Big Snowy Mountains Field Area

D

Geologic Setting of Field Study Areas

Geologic Setting of Field Study Areas

Structural Setting of the Big Snowy Mountains

Sequence Stratigraphy of the Madison Group

- Madison Group Limestones:
 - Deposited on a 400 km ramp
 - Thickest in the Central MT Trough due to high subsidence rates
 - Comprise a 2nd order supersequence spanning 12 m.y.
 - Capped by a regional unconformity
 - Composed of two composite sequences, six 3rd order sequences, and numerous higher frequency cycles

(modified from Katz et al., 2007)

(modified from Sonnenfeld, 1996)

Breccia Pipe Properties and Heterogeneities

Properties of Hydrothermal Breccia Pipes

- Outcrops are characterized by:
 - Hydrocarbon bleaching
 - Minimal fracturing of the host rock
 - Iron- and manganeseoxide crusts and veins
 - Undisturbed bedding
- Breccia pipes display:
 - Crushed and rotated clasts
 - Zonation of alteration and mechanical differences

Types of Hydrothermal Breccia Pipes

Relation of Linear Discontinuities to Breccia Pipe Distribution

Field Fracture Station Measurements

Field Fracture Station Measurements

- "Strike" (b-c) lineaments:
 - ±15° of the fold hinge (109)
 - Azimuth of 094 -124
- "Dip" (a-c) lineaments:
 - ▶ ±15° orthogonal to the fold hinge (199)
 - Azimuth of 184-214
- "Oblique" lineaments:
 - Set 1 (NE-SW): Azimuth of 049-079
 - Set 2 (NW-SE): Azimuth of 139-169
- "Other" lineaments

- "Strike" (b-c) lineaments:
 - Hinge-parallel Mode I extensional joints
 - Formed in relation to outer-arc extension of a bed during flexural slip
- "Dip" (a-c) lineaments:
 - Hinge-perpendicular Mode I extensional joints
 - Formed in relation to plunge-parallel extension
- "Oblique" lineaments:
 - Shear array of conjugate joints

(modified from Lageson et al., 2012)

Satellite Image Lineament Analysis

Satellite Image Lineament Analysis

- σ₁ of 018 suggests a possible structural control by pre-existing planes of weakness, possibly by an array of Belt-age faults
- Overprinting of transpressive and rotational zones of shear

(modified from Brown, 1993)

Effects of Secondary Mineralization on Porosity and Permeability

Chemical Compositions of Breccia Samples

XRD bulk mineral phase identification

- Carbonate content determined from published empirical curves relating calcite and dolomite
 - Relates the differences in ionic sizes by the interplanar d-spacing
- Dolomite reaches a maximum value of 5%
 - Distribution does not appear to be related to the sample type or region
- Quartz more common in SWC samples
 - Only present in whole rock samples from the BSFS

(modified from Zhang et al., 2010)

Chemical Compositions of Breccia Samples

- The isotopic signature of marine water is governed by the δ¹⁸O, δ¹³C, and ambient temperature of the fluid
- Strongly depleted δ¹⁸O content:
 - Increased temperatures
 - Presence of non-marine fluids
 - Multiple episodes of hydrothermal fluid migration
 - Later stage cementation events
- Slightly positive average δ¹³C content:
 - Marine origin
 - Little biogenic input

- δ¹⁸O compositions:
 - ▶ BSFS: -5.56‰ to -19.62‰
 - ▶ SWC: -3.28‰ to -14.12‰
- δ^{13} C compositions:
 - BSFS: -6.38‰ to 3.27
 - ▶ SWC: -2.04‰ to 4.01‰

Secondary Porosity and Permeability

- Paragenetic Sequence:
 - Early compaction, cementation, and suturing of grains
 - Secondary in-situ dissolution and matrix dolomitization concurrent with extensive solution collapse brecciation along sequence boundaries
 - Faulting, fracturing, and hydrothermal brecciation
 - Late-stage tectonic stylolitization
 - Cementation of previously open fractures

Secondary Porosity and Permeability

Discussion of Research Questions and Hypotheses

Structure and Lineament Mapping

- Outcrop fracture measurements
 - Dip and a set of oblique joints control breccia pipe emplacement

Regional lineament mapping

- Dip joints are most prevalent
- Strike and oblique joints formed in association with tectonic uplift
- Evidence of preexisting structural grain

(modified from Woodward, 1997)

Stratigraphic Distribution of Breccia Pipes

- The proximity to major fault zones did not influence the size and distribution of hydrothermal breccia pipes
- All breccia pipes measured along the BSFS and SWC lie along stratigraphic contacts
- Brecciation preferentially parallels bedding planes along major lithologic contacts
 - Bedding planes are weaknesses along which fluids may favorably migrate
 - The Mission Canyon Limestone acts as a more structurally competent unit within the region

Hydrothermal Diagenesis

- Hydrocarbon bleaching
- Selective dissolution and hydrothermal cementation of the host rock
- Strong depletion of δ¹⁸O
- Secondary mineral precipitates
- Increase in area porosity

Fluid Flow Parameters

Hydrothermal solution permeates into limestone host as a halo of replacement dolomite preceding brecciation at the fault tip

Hydraulic fracturing and brecciation occur in the dolomitized halo as slip occurs along the master thrust

Explanation:

Dolomitized

Dilational Breccia

Dolomite

(c) Stage 3: Episodic Seismicity

Vertical hydraulic fracturing and brecciation continue in the dolomitized plume with upward propagation of the fault tip

- Fault

- Hydrothermal breccia pipes form a combined conduit-barrier system
- Early dissolution and dolomitization likely increased porosity and permeability in the subsurface
- Late-stage precipitates such as calcite, quartz, and iron may have occluded porosity
- Compartmentalization by the formation of horizontal flow barriers along sequence boundaries
- Vertical migration as a concentrated pipe localized along structural features

Acknowledgements

Committee: David Lageson, James Schmitt, Colin Shaw Property Owners: Three Bar Ranch, Hannah Ranch, Hertel Ranch, Tucek Ranch, McCarthy Ranch, Nelson Ranch, Simpson Ranch, Hickey Ranch, Butcher Ranch Field Partners: Eric Easley, Jacob Thacker, Julian Stahl, Kimberly Roush Additional Support: Anita Moore-Nall, Helen Lynn, Structural Geology Research Group, Brad Jeffrey, Eric Hiatt, Gerald Gutoski