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Seafood through time: changes in biomass, energetics, and
productivity in the marine ecosystem

Richard K. Bambach

(1) Diversity, ecosystem complexity, and the
utilization of ecospace have increased
during the Phanerozoic.

(2) The total biomass of marine consumers
has increased.

(5) spread of organisms with more energetic
modes of life from settings with estab-
lished high rates of food supply in the
early to mid-Paleozoic into habitats with
lower relative rates of food supply in the
Mesozoic and Cenozoic is indirect evi-
dence of an increase in food availability
in the marine ecosystem.

(3) More energetic modes of life have be-
come common among dominant macro-
scopic organisms.

(4) Within any particular Bauplan the effec-
tiveness of nutrient acquisition does not
increase with time, although increased re-
source partitioning (specialization) may
occur if resources become more abundant.

(6) An increase in the biomass at the base of
the food chain (i.e., an increase in primary
productivity) was necessary to support the
increases in biomass, metabolic rates, tier-
ing (both above and below the sediment/
water interface), and predation that have
occurred during the Phanerozoic.

(7) Evidence of increased global productivity
during the Phanerozoic comes directly
from both the rise of life on land and the
increase in diversity of marine phyto-
plankton.




Seafood through time: changes in biomass, energetics, and
productivity in the marine ecosystem

Richard K. Bambach

On the global scale considered here an
effort at quantification would be too specu-
lative at this time.
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[reatise on Invertebrate Paleontology
Literature for Vertebrates

Sepkoski's Stratigraphic %anges
Solitary Bilaterian Animals
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Arthropods
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26,655 genera with stage-resolved strat. ranges
16,831 genera with ranges & sizes
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Marine Animal Genus Diversity
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Quantifying Marine Animal Ecology

Changes in theoretical ecospace utilization in marine fossil
assemblages between the mid-Paleozoic and late Cenozoic
Andrew M. Bush, Richard K. Bambach, and Gwen M. Daley

Paleobiology, 33(1), 2007, pp. 76-97

U ® ® ® ®© % T B T T T S 3 © © o6 o Tiering
@ &~ &= S 3 3 n = £ £ £ £ O 58 = ©®© 8 ¥ P
s W € ® ® ® W G G © © c o =< 5 8 O Pelagic -
3w = N T © & © o O o g - ~
Q. » £ £ £ 2 £ £ = g O = rd
s @ < ®@ < 7 I ) o Erect 1T L
E 3 8 s - A il
T = O o = @ £ Surficial e
n =0 c2 ;] D Semi-inf 1
38 2% vk
® g Z ¢ Shallow AN A
L Ve A OO >
S / A ‘90 > é,
3 q Dee ® <
A 4 P 0y 9%,
N N S
S (L / S % 22 > 45 %@L Ly
._ l = S 8 £ § 8 £ % %, % @cz Oé@
— e &< 8 8505 R A N
: =SS 3] pat Q
O | S 28235 3 A g
0 P -
%) , o
Feeding Motility




Quantifying Marine Animal Ecology

Changes in theoretical ecospace utilization in marine fossil
assemblages between the mid-Paleozoic and late Cenozoic
Andrew M. Bush, Richard K. Bambach, and Gwen M. Daley

Paleobiology, 33(1), 2007, pp. 76-97
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Quantifying Marine Animal Ecology
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Quantitying Marine Animal Metabolism

Effects of Size and Temperature

on Metabolic Rate B — b _E/kTM 3/4
e AT s e ™ — e

271 SEPTEMBER 2001 VOL 293 SCIENCE
B = Metabolic rate (VVatts)
bo = scaling constant
E = activation energy (~ 0.65 eV)
k = Boltzman’'s constant
I = temperature (K)

M = mass (kg)
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Effects of Size and Temperature

on Metabolic Rate — 2 E / /<T 3 / 4
James F. Gillooly,'* James H. Brown,"? Geoffrey B. West,?> R ‘
Van M. Savage,?? Eric L. Charnov’ O

271 SEPTEMBER 2001 VOL 293 SCIENCE

B = Metabolic rate (VVatts)

bo = scaling constant

E = activation energy (~ 0.65 eV)
k = Boltzman’'s constant

I = temperature (K)

M = mass (kg)

* Ash Free Dry Mass




Marine Animal Ecology

AUTECOLOGY AND THE FILLING OF ECOSPACE:
KEY METAZOAN RADIATIONS

by RICHARD K. BAMBACH*, ANDREW M. BUSHT and DOUGLAS H. ERWIN*

Palaeontology, Vol. 50, Part 1, 2007, pp. 100
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Paleozoic (542 - 252.2 Ma)
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(66 Ma - Present)
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(1) Diversity, ecosystem complexity, and the
utilization of ecospace have increased

during the Phanerozoic.
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Marine Animal Biovolume

Mean biovolume (log;, mm°)
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Marine Animal Biovolume

Mean biovolume (log;, mm°)
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Marine Animal Biovolume
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(2) The total biomass of marine consumers
has increased.
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Feeding: Genus Diversity

Number of genera
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~reeding: Mean Blovolume

Mean biovolume (log;, mm°)

suspension
surface deposit
o mining
o .
< grazing
predatory
other
o
o —
™
o
O —1
(QV
o
9 —1
O —
Cm | [ o | s | || P | Tr || K| Pg. | Ng
500 400 300 200 100

Geologic time (Ma)




Motility: Genus Diversity
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Motility: Mean Biovolume

Mean biovolume (log;, mm°)
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Marine Animal Metabolism

Mean metabolic rate (logig mW)
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Metabolic dominance of bivalves predates

brachiopod diversity decline by more than

150 million years

Jonathan L. Payne', Noel A. Heim', Matthew L. Knope' and Craig R. McClain?

Proc. R. Soc. B 281: 20133122
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Metabolic dominance of bivalves predates
brachiopod diversity decline by more than
150 million years
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(3) More energetic modes of life have be-
come common among dominant macro-

Scopic organisms.
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Conclusions

Richard was right!

(1) Diversity, ecosystem complexity, and the
utilization of ecospace have increased
during the Phanerozoic.

(2) The total biomass of marine consumers
has increased.

(3) More energetic modes of life have be-
come common among dominant macro-
scopic organisms.




