The slow decay of aftershocks triggered by the August 2011, Mineral, Virginia earthquake
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ABSTRACT AFTERSHOCK OCCURRENCE OVER TIME AFTER MAINSHOCK

On August 23, 2011, a Mw 5.8 earthquake, one of the larger earthquakes in the eastern U.S. in over a century, struck near the town of Mineral, Virginia. A

Aftershocks following the Mineral, Aftershock frequency, magnitude, and

multi-institution deployment of seismometers in the epicentral region of the Mineral earthquake yielded the best recorded aftershock sequence in the eastern Kettleman Hills, and Whittier Narrows earthquakes moment release for Mineral versus California events Number of events per day in each aftershock defined fault zone
U.S. and has offered a rare opportunity to study the decay of aftershocks in an intraplate setting. The Mineral earthquake was a reverse faulting event, and " Timora] Eareeke (M 3.5 C Ve - 1 e ——

comparison with two reverse faulting earthquakes in California (the 1985 Mw 6.1 Kettleman Hills and 1987 Mw 5.9 Whittier Narrows earthquakes) has revealed A | | NI hm ki e 1 i"l“ Lt ||| ! |
variations in the rate and duration of aftershock sequences. The rate in the California aftershock sequences decreased to two or fewer events per day 20 days " . E B

after the mainshock. Aftershocks of the Mineral earthquake decreased in a power law decay fashion for the first 10 days after the mainshock, but then m - . foa ] =

increased to more than two events per day at about ~25 and 100 days after the mainshock. Each catalog was constrained using a Mc = 2.2 and to events ° 2 hHH i i JJ"JMHMMW | ‘ [ ] m N U

located <15 km from the mainshock. Modified Omori’s law curves fit to each sequence yielded a low p-value of 0.76 for the Mineral earthquake compared to “ is © A £

p-values of 1.13 and 1.25 for the Kettleman Hills and Whittier Narrows earthquakes (respectively), indicating a significantly slower decay of aftershocks from iL — é :

the Mineral earthquake. This slow decay rate can be attributed in part to the delayed occurrence of earthquakes along the aftershock-delineated Fredericks o 2o | ORI l. . ; :

Hall (~25 days after the mainshock) and late northwest (~100 days after the mainshock) faults. Structural heterogeneities, stress, and temperature in the crust | [ s i 10 o s g ) T ] o

are all cited as factors responsible for causing variations in p-value. The crust in the eastern U.S. is older and colder than in many tectonically active regions. el : ; : | s Fake (i 59) S Clfomi o T | R R N |
These characteristics could explain its prolonged aftershock decay rate. The slow decay of aftershocks from the Mineral earthquake may also support the hy- “ j | | _ T ey
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0 ] Time series showing number of aftershocks per day in the aftershock zone and each named aftershock
2 ' 1 fault zone shown in Figure 3-4 [Horton et al., 2012]. The majority of recorded aftershocks
. [ { { . { . H ‘ occurred on the Quail Fault zone immediately following the mainshock, while the aftershocks that
0 ' ' ' o ' define the Fredericks Hall fault zone and Late Steep fault zone occurred ~25 and ~100 days,
respectively, after the mainshock.

pothesis that aftershock duration is inversely proportional to fault stress rate, according to which aftershocks in active tectonic margins may last only a few
years whereas aftershocks in intraplate regions may endure much longer.
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Multiple institutions including the United States Geological Survey (USGS), Virginia Polytechnic Institute and State University (Virginia Tech), Lamont-Doherty Earth Observatory of control the aftershock occurrence [Peng et al., 2006]. Time (days after mainshock)
Columbia University, University of Memphis Center for Earthquake and Research Information (CERI), Lehigh University, Incorporated Research Institutions for Seismology (IRIS), and _ o _ _
Cornell University deployed temporary seismometers in the source region immediately following the mainshock [Horton and Williams, 2012]. This aftershock detection seismic We used Matlab scripts based on the earthquake statistics program ZMAP [Wiemer, 2001] to fit
network was in place approximately three days after the mainshock and deployed through May 2, 2012, allowing a timeframe of 253 days (~8 months) to capture the characteristics of modified Omori’s law curves to the Mineral, Kettleman Hills, and Whittier Narrows aftershock se- Aftersock decay study parameters
the aftershock decay sequence. An initial catalog of detected aftershocks is available on theT USGS Website for thg Mineral earthquake at | - | guences using a Mc of 2.2 and time elapse of 253 days after the mainshock. The script is designed e rthauake Eﬁgéiltgriithaar;cgemgns acnitude
http://earthquake.usgs.gov/reg|onaI/ceus/se08231la/aftershocks.php, however we u_sed an improved version of this catalog that used a hypoce_nt_r0|dal decpmposm.on algorithm to to bootstrap a curve with the modified Omori’s decay law constants for 1 day time intervals. ZMAP Nams B n Leed fo extract el bvalue p c k
prepare a catalog of calibrated, relocated aftershocks spurred by the August 2011 Mineral earthquake [McNamara et al., 2013]. We used a preliminary version of this catalog to : . : - _ aftershocks
characterize the decay rate of aftershocks in the epicentral region of the Mineral earthquake and compare them to the aftershock decay rate produced by the California earthquakes. ;]Sttfrelfly ava”a?rl]e frokm ﬂlﬁ EThl;I Z]lcjt”Ch sarthqua_:_(ﬁ Stat!SttICS Grglfjp ?}: VS tracted \1\,41‘;;;‘;‘; 15 22 091 076 5 226
p:/lIwww.earthquake.ethz.ch/software/zmap. The scripts used for this analysis were extracte Ketthoma™
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We used earthquake catalogs publically available from the Northern California Earthquake Catalog and the Southern California Earthquake Data Center (based on permanent seismic from ZMAP and compiled by Brendan Sullivan, J. Luis, Zhigang Peng, and others in the Geophys- el
networks) to characterize the aftershock decay rate of the Kettleman Hills, Northern California, and Whittier Narrows, Southern California, earthquakes for comparison to the Mineral Ics group at Georgia Institute of Technology and are available at Narrows P 22 S S
earthquak_e. Comparisons of Fhe magnituple frequency relations indicated earthquakes less than magnitudg 2.2 were not consistently detegted from the.temporary seismic network http://geophysics.eas.gatech.edu/people/bsullivan/tutorial/StatisticalSeismology.htm. The scripts
deployed in the eplce_ntral region of t_he Mineral earthquake and events less than ~1.8 were not detectable in the region of t.he Kettleman Hills and Whittier Narrows events. Therefore are accompanied by instructions, a tutorial, and explanations for their use on the website.
we used a Mc of 2.2 in order to consistently compare the aftershock decay rate of the Mineral earthquake to these California events.
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