65 sherds were recovered from Woodland Period sites 44WR032 and 44WR088 in Front Royal (Warren County), Virginia for petrographic analysis to define the variability of aplastic component assemblage. An ISSA study of similar sherds from these sites found that over half of the sherds that were described as having steatite tempering did not exhibit a chemical compositional portrait consistent with aplastic rock fragments. This study identified that 17 sherds contained either steatite, soapstone or mafic schist rock fragments as a primary (25% modal) aplastic component. Cross-disciplinary investigations often bring into question the terminology and nomenclature. The term "steatite" is used interchangeably, but the term "soapstone" is used when the mineral composition is dominated by talc and serpentine when the mineral composition is talc. However it also indicates that determining the geographic constraints on these processes may be difficult.

TERMINOLOGY ISSUES: STEATITE vs. SOAPSTONE vs. MAFIC SCHIST

Steatite-tempered Early Woodland Period (1200 – 500 BCE) ceramics of Virginia: A question of steatite identity and nomenclature

Michael S. Smith and Stuart Fiedel2

1Department of Geography and Geology, University of North Carolina Wilmington, Wilmington, NC 28403 2The Louis Berger Group, Inc, 801 East Main Street, Suite 500, Richmond, VA 23219

INTRODUCTION

The archaeological literature uses the term steatite in describing the talc-dominated Archaic carved stone pots (Figure 3) as well as the talc-dominated rock fragments found in Early Woodland pottery (e.g., Mason Creek, Seeker Island, and Northeast Virginia sherds that resemble the carved steatite pots in shape. Steatite-tempered pottery is represented by the Mason Creek, Plaza series with white and unaltered unstratified and oxidized exterior surfaces (~1200 BCE). Early Woodland and Southern Plain steatite-tempered series with a coalesced exterior (~1000 BCE). Likewise the description of steatite in the literature is poorly defined from a petrological perspective (i.e., Moore, 2002), pp. 264-265.

Steatite, by mineralogical definition is a compact, massive, fine-grained metamorphic rock consisting mainly of the mineral talc, but also variable amounts of carbonate minerals, chlorite, amphibole minerals (i.e., tremolite, anthophyllite, etc.), and iron and fine-grained silica minerals (Smith, 1961; Bates and Jackson, 1987). Alternatively, the term steatite is used simply to refer to talc, often restricted to gray-green or green micaeous talc that can be easily carved into ornamental objects (Smith, 1961; Bates and Jackson, 1987). The names steatite and soapstone are used interchangeably, but often talc is used when the mineral composition is dominated by talc and serpentine when the mineral composition is talc. However, the term serpentine is used when the mineral composition is dominated by talc and serpentine when the mineral composition is talc.

The variability of the mineralogy in these rock fragments may suggest different source locations or mineral from different portions of a regional metamorphosed ultramafic rock body. These rock fragments are formed by the metamorphism of ultramafic igneous rocks (i.e., olivine, pyroxene or carbonate minerals, chlorite, amphibole minerals (i.e., tremolite, anthophyllite, etc.), and iron-oxide minerals (Smith, 1961; Bates and Jackson, 1987). Because steatite and soapstone are formed by the metamorphism of ultramafic igneous rocks (i.e., olivine, pyroxene or amphibole-dominated), the variability of these rock fragments is determined by the metamorphic environment in which the ultramafic igneous rocks were formed. These equivalents are often olivine (altered heavily)-, pyroxene- and amphibole-bearing rocks (Bates and Jackson, 1987). The metamorphic literature has been modified in this study to provide a more quantitative evaluation of the site abundance. In the study, steatite is used when the mineral composition is dominated by talc (90 + %) and soapstone when the mineral composition is talc (90 to 95 %) or varying amounts of chlorite, amphibole (asbestos-like minerals), pyroxene, mica and opaque minerals.

CERAMIC POLYTYPE – RESULTS AND OBSERVATIONS

A steatite vessel fragment (CXE2470-2470) from the site was used for comparison purposes for the aplastic inclusions found in the Archaic carved stone pots. As can be observed in Figure 6B, the steatite vessel would, by mineralogical definition, be characterized by very coarse-grained angular rock fragments dominated by talc and chlorite in the talc-dominated Archaic carved stone pots (Figure 3) as well as the talc-dominated rock fragments found in Early Woodland pottery (e.g., Mason Creek, Seeker Island, and Northeast Virginia sherds that resemble the carved steatite pots in shape. Steatite-tempered pottery is represented by the Mason Creek, Plaza series with white and unaltered unstratified and oxidized exterior surfaces (~1200 BCE). Early Woodland and Southern Plain steatite-tempered series with a coalesced exterior (~1000 BCE). Likewise the description of steatite in the literature is poorly defined from a petrological perspective (i.e., Moore, 2002), pp. 264-265.

Steatite, by mineralogical definition is a compact, massive, fine-grained metamorphic rock consisting mainly of the mineral talc, but also variable amounts of carbonate minerals, chlorite, amphibole minerals (i.e., tremolite, anthophyllite, etc.), and iron and fine-grained silica minerals (Smith, 1961; Bates and Jackson, 1987). Alternatively, the term steatite is used simply to refer to talc, often restricted to gray-green or green micaeous talc that can be easily carved into ornamental objects (Smith, 1961; Bates and Jackson, 1987). The names steatite and soapstone are used interchangeably, but often talc is used when the mineral composition is dominated by talc and serpentine when the mineral composition is talc. However, the term serpentine is used when the mineral composition is dominated by talc and serpentine when the mineral composition is talc.