LATE MIOCENE CHONDRICHTHYANS FROM LAGO BAYANO, PANAMA WITH IMPLICATIONS FOR A MARINE CONNECTION BETWEEN THE CARIBBEAN AND PACIFIC

Victor Perez, Catalina Pimiento, Austin Hendy, Gerardo González-Barba, Gordon Hubbell, and Bruce MacFadden

Background: Evolution of the Isthmus of Panama

Materials & Methods: Chondrichthyans of Lago Bayano

Results: Paleoenvironment, Paleobathymetry, Paleobiogeography

Summary: Overview of Late Miocene Chondrichthyans of Panama

Future Work: Geochemical Characterization

Two Models for the Evolution of the Isthmus of Panama

15 – 13 Mya

Lago Alajuela Lago Gatun

Panama

Panama

US Dept of State Geographer Image Landsat © 2015 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO

Lago Bayano

Google earth

palynology samples, hundreds of sedimentary and igneous petrology thin sections as well as stratigraphic sections and structural traverses.

Image taken from http://www.stri.si.edu/sites/jaramillo/PDFs/Panama_Geology_Project.pdf

	Darien Gatun		un	Alajuela	
Formation	Chucunaque Formation (Coates et al., 2004)	Gatun Formation (Pimiento et al., 2013)	Chagres Formation (Carrillo-Briceno et al., 2015a)	Alajuela Formation (Unpublished)	
Age	5.7 – 9.4 mya	9 – 11.5 mya	8 – 6.5 mya	Miocene	
Paleogeography	Pacific	Caribbean	Caribbean	Caribbean	
Depth	200 – 500 m	< 100 m	100 m (Rio Indio) 200-300 m (Piña	< 200 m?	

Reconstructing Environments from Sharks and Rays

Why Sharks?

- 1) Long-lived species
- 2) Mobile
- 3) High Preservation Potential

Modern Analogs

- Depth Preferences
- Diet Habits
- Migratory Patterns
- Temperature Restrictions
- Biogeography

Late Miocene Urumaco Fm - Venezuela

Carrillo-Briceno et al. (2015b)

Lago Bayano

- Western Margin of the Bayano-Chucunaque Basin
- Flooded river valley (artificial lake)
- Late Paleogene-Neogene succession
- Molluscan assemblage from shark tooth bearing strata correlate with that of the Chucunaque Formation (Hendy, in prep.)

Photo Credit: Catalina Pimiento

Taxonomic Diversity

1432 specimens
5 orders
8 families
20 genera
38 taxa (21 extant)

Batoidii

Functional Diversity

Cutting-Grasping (Carcharhinus)

Vestigial/Filter-Feeding (Mobula)

Crushing (*Rhinoptera*)

- Cutting
- Crushing
- Clutching
- Cutting-Grasping
- Grasping-Cutting
- Vestigial

Littoral

Dentition Types (as defined by Kent, 1994)

1 47

40.88

3.65

- 0.84 0.49 0.07 0.07 Littoral: Cancritrophic Littoral: Eurytrophic Littoral: Teuthitrophic Littoral: Sphyrnid 4.21
- Littoral: Archipelagic
- Aquilopelagic
- Macroceanic
- Macroceanic: Tachypelagic
- Microceanic
- Rhyncobathic
- Rajobenthic

Ecomorphotypes (as defined by Compagno, 1990)

19.57

5.61

Paleobathymetry – Ancient Depth

	Bayano	Darien	Ga	tun	Alajuela
Formation	Chucunaque Formation	Chucunaque Formation	Gatun Formation	Chagres Formation	Alajuela Formation
	(Perez et al., In Review)	(Coates et al., 2004)	(Pimiento et al., 2013)	(Carrillo et al., 2015)	(MacFadden et al., In Prep)
Age	9.4 – 9.8 mya	5.6 – 9.4 mya	9 – 11.5 mya	8 – 6.5 mya	9 – 10 mya (9.7)
Paleogeography	Pacific	Pacific	Caribbean	Caribbean	Caribbean
Abundance	1432	N/A	800	500	42
Diversity	38 taxa (21 extant)	N/A	26 taxa (18 extant)	30 taxa (14 extant)	8 taxa (2 extant)
Depth (m)	Neritic	Bathyal	Neritic	100 (Rio Indio)	Marginal Marine – Neritic
	< 195 (avg. 100)	200 – 500	< 110 (avg. 55)	< 650 (avg. 370) (Piña Sandstone)	< 200 ?

Chondrichthyan Paleobiogeography

	Caribbean	Pacific	Both
Chucunaque Fm (N=21)	3 (19%)	2 (10%)	16 (76%)
Gatun Fm (N=18)	4 (22%)	3 (17%)	11 (61%)

How can we improve our understanding?

- Describe new late Miocene marine localities from the Neotropics
 Alajuela, Bayano, Darien, ...
- Characterize the late Miocene marine environments
 - Salinity, Temperature, Nutrients, Dissolved Oxygen, Isotopes
 - Improve ocean circulation models
- Continue to explore paleobiogeography (more fossils!)
 - Vertebrates, Invertebrates, and Plants
 - Macro, Micro, and Nano fossils

Amanda Waite

Photo Credit:

Jon Hendricks

Acknowledgements

This work was funded by U.S. National Science Foundation (NSF) grant 0966884 (OISE, EAR, DRL) and the Smithsonian Tropical Research Institution (STRI). We appreciate additional funding, in-kind support, and field assistance by C. Jaramillo, C. Montes, D. Ramirez, C. Suarez, L. Londoño and V. Zapata (STRI), and R. Portell (FLMNH). We also acknowledge the generosity and guidance of the local Embrerá at Puente Bayano, in particular Noy Ortega and Samuel Quiroz. Ricardo Perez is acknowledged for donating the Toyota vehicles used for fieldwork, and the Dirección de Recursos Minerales are thanked for providing collecting permits. Dr. Ann Heatherington is thanked for assistance with SEM images and Sr isotope analyses. We also appreciate the advice on statistical methods provided by M. Kowaleski. This is a contribution of the NSF Partnerships for International Research and Education Panama Canal Project and the University of Florida Contribution to Paleobiology number 762.

