SUBORBITAL ANALYSIS: THE A-to-B
PROBLEM IN PLANETARY SCIENCE

TIME OF FLIGHT (TOF): CORRELATING EJECTA & STREWN TO SOURCE

Derivations Within This SUBORBITAL ANALYSIS Are Based On The Simplified Two-Body Model Where The
Satellite Is Assumed To Be Massless. System Mass Is Concentrated At The Center Of The Central Body, Which
Is Also The Coordinate Origin Of The Body-Centered Inertial Frame. Higher Order Terms Are Neglected, Such A
Planetary Oblateness, Lunar Gravity, Solar Pressure, Electro-Magnetic & Atmospheric Effects.

Basic Suborbital Trajectory:
A-to-B Chord & Central Angles
(Scaled To Earth’s Gravity)

Suborbital Time Of Flight (TOF) Depends On Eccentricity “e” AND
Semi-Major Axis “a” Instead of Semi-Major Axis Only as in FULL
Orbits (Kepler’s 3 Law).
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The b-Circle For TOF Calculation

Per Kepler’s 2" Law:

Constant Area Sweep Rate

Infinite Different A-to-B Trajectories Exist, Each With A Different TOF
Value, For A Rotating Planet. This Complicates Analysis.
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Calculating Swept Area Is Trivial

Infinite Trajectories Exist To Get From A-to-B:
One Solution For Each Discrete TOF While B
Rotates Through Inertial Space.

The Set Of All Solution Trajectories For A Given A-To-B Pair
May Be Defined By The A-To-B Launch Solution Helix. This Usefu
Format Always Has Common Features From Bottom Up:

& A Base Leg Starting At The Min TOF Solution Trajectory
@ A Minimum KE Point Just Above Min TOF Point

& A Transition Or “Knee” where AEL Gives Way To AAZ
& An AZ Arc Which May Encircle 1, 2 or No Poles

@ A “Day Later” Point On Approximately The Min TOF AZ

.............. NS The Min TOF Trajectory Is Defined By A Circular Orbit At Zero
: Altitude, Smooth Spherical Planet, No Atmosphere. The Launch

View In Plane With the Equator
wy

VN N Solution Helix Is Defined In The Local Topocentric (Earth-Fixed)
Y N Frame For Comparison To Lab Test Ejection Patterns.
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The A-To-B Launch Solution Helix Is Defined By Kinetic Energy
Launch Vectors in Azimuth (AZ), Elevation (EL), and Magnitude
Normalized To Earth Escape KE Or EEKE.
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Impact Structure.

A Suspected Ejecta Emplacement Has No Associated
Details Imprinted Within The
Subcontinental Stratigraphic Sand Unit Cry Out For
Adequate Interpretation. Previous Workers Have Failed

To Explain The Combined Set Of Observable Details.
OBSERVED EC ENT: 500,000 mz

The Ovoid Alignment In The Sand Unit Is Rigidly
Systematic By Lat [2], Bearings Geographically
Convergent. Is This A Clue To The Transport &
Emplacement Processes? Location Of Origin? Age?

NEBRASKA 5 km ovoID DEPRESSION

45, 000+ Ovoid Depress:ons In A ~500,000 km?
Depositional Unfossiliferous[1] Sand Unit: Quantified
By Cintos.org, All 45,000 Cases Were Deposited By A
Single Process [1] & Fit Just Six (6) “Archetype” Shapes.

SHORE ~ OVAL CAROLINA SOUTH

AII Carollna Bay (Ovoid Depresston) Imagery Provided

By Cintos.org And M. Davias [2,3], Who Measured
LiDAR Imagery Of 45,000+ Of Them. Adjacent
Overprinting In Some Pairs Of Depressions Indicate
Suborbital Transport [4]....

WEST

The Sand Is Lacking Any & All Evidence Of Terrestrial
Transport Process [1], Having Angular To Subangular
Grain Texture, Monotonous Bulk Uniformity, Opaque
White Appearance And Extensive Internal Fracturing.

The Six Archetypes Are Identical To Ballistic Missile
Targeting Diagrams, Strongly Indicating A Suborbital
Governor Of The Unit Transport & Emplacement
Processes. They Are Gravitational Convolutions Of
Launch Vectors With Slight Velocity Variation Across
A Conical Profile, Exactly Like Suborbital Ballistic
Probability Profiles. This Is A Ballistic Emplacement.
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As The Aggregate Descends To The Surface In Varying Flux, the Imprinted Flow Becomes Emplaced
As A Robust Stratigraphic Unit Upon The Antecedent Terrain, With Angular Grains Interlocking.
The Expression Appears As Uniquely Shaped Oval Voids With Rims In The Sand Unit. Overprinting
Between Adjacent Bays (i.e. Obstruction Shadowing [4] Of Proximal Bodies [5,6]) Is Also Present.

“Suborbital Convolution” [5] Happens As The Radial D:splacement From The Bow Shock Induces
Veloc:ty Vanahons Around The Conical Perimeter Of/The Wak;e The Veloc:ty Variations Cause

Flux Variation [6] Of Comminuted Tar
Larger Body, Or ”Obstructwn” Defle

These Flux Variations
A Rim Around A Depression In A Unit Of
Suborbital Convolution Further Tailors Rim Shape.

Represent “Seeds” Of Later
Depositional Bedding.
[1] R.B. Daniels, E.E. Gamble & W.H. Wheeler, 1970, “THE GOLDSBORO RIDGE, AN ENIGMA”,

Southeastern Geology vol.12 pages 151-158
[2] M.E. Davias & J.L. Gilbride, “LiDAR-Derived DEMs...” poster, GSA 2011 Annual Meeting

SUBORBITAL ANALYSIS: THE A-to-B
PROBLEM IN PLANETARY SCIENCE

TIME OF FLIGHT (TOF): CORRELATING EJECTA & STREWN TO SOURCE

Because So Many Trajectories Are Possible For Every A-to-B Pair, We Need Perspective On How
Suborbital Analysis May Help Correlate Both Regional And Global Strewn & Ejecta. Two Master
Plots Are Very Helpful For Such Perspective, Allowing Quick Reference For Most Related
Problems. On The Left, “Iso-TOF” Contours Are Shown Vs. Central Flight Angle & Normalized
semi-Major Axis. On The Right, Central Flight Angle Contours Are Shown Vs. Eccentricity & TOF.

a/Repyy vS. Central Flight Angle & TOF SUBORBITAL TIME OF FLIGHT vs. ECCENTRICITY
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REGIONAL EXAMPLE: Since The Launch Solution Helix Has A Fairly Vertical Leg For Close A-
To-B Range, Emplaced Principal Clocking Stays Relatively Constant For Elevations Below The
Knee Of The Helix, While Emplaced In-Track Length Increases With Elevation. This Pronounced
Separation Of Effects Allows Range-&-Radial Source Location For Repetitive Emplaced
Morphometry That Has Systematic Alignment By Geographic Location (i.e. The Carolina Bays).

‘ EMPLACED PRINCIPAL DIRECTIONS
Infinite A-to-B Trajectories Yield A Continua Of
Downrange & Cross-Range Principals At Point B:
Different EMPLACED PRINCIPALS For Each TOF.

1 .
Principal Directions For ing TOF] Flight Arc

-0 Moving Target

— Emplaced
Principals

— Suborbit

[3] All LiDAR Supplied As KMZ or KML By M. Dawas & Cintos.org

[4] T.H.S. Harris GSA 2015 Annual | Obstruction Shad: Poster
[5] All Earth Views Generated On Google Earth Free-Ware Edition, Trajectory KML Product &
Conical VEL Perturbations By T.H.S. Harris With His Own “MacOrb” Suborbital Analysis Tools.
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Emplaced Principal Directions, 3 Degree AZ/EL ¥%Cone, AVEL = 0
Mid Latitude Launch Point A: +43.6°
DA-to-B: ~850 km = 7.65° GC distance (-4.7° Lat & +8.2° Long)

60 <o-t1 Low EL (EL/AZ/VEL :
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[6] All Hypersonic Profiles And Proximal Body Images By Dr. Stuart Laurence
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CONICAL PERTURBATION AND ORBIT OUTPUT OVERLAY
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Mid Latitude Launch Point A: +43.6°

AA-to-B: ~850 km = 7.65° GC distance (-4.7° Lat & +8.2° Long)
«©-t1 Low EL (EL/AZ/VEL :
30°/105.8°/3.6 km/s)
=%-t1+1hr (EL/AZ/VEL :
E\\ 81.8°/89.9°/8.5 km/s)
s “Bt1+2 hrs (EL/AZ/VEL :
79.2°/79.3°/9.2 km/s)

Note 1: smplmd

NN
N 59)1(

Principals

cockwise w/ increasing

TOF, except at low EL.

Note2: 30°EL has order —_
of magnitude lower in- ~]
track Principal Axis length X T~
than 80° EL for same cone! —

Note 3: A 6" wide launch
cone produced all of these
Principals. Longer TOF
and higher EL expand N
regional Principals, in- X

track axis especially.

~At1+3 hrs (EL/AZ/VEL :
76.5/71.0°/9.6 km/s)

%-t1+4 hrs (EL/AZ/VEL :
73.9°/63.2°/9.8 km/s)
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A Simple Cone Of Launch Vectors With Vertex At Some Proposed Launch Point Is Used To Generate A Conical Set of

Suborbital Ballistic Trajectories.

The Cone Represents An Obstruction to Impact Detonation Outflow From That Vertex

(i.e. Spherical Adiabatic Expansion With Entrained Aggregate Ejecta). The Outflow Velocity Is Altered By Bow Shock
Around An Obstruction During Ascent [4]. When The Trajectories Descend To Emplacement, They No Longer Have The
Same Cross Section As Imprinted by The Bow Shock. Orbital Dynamics Imparts Added Features During Suborbital Flight:
A Suborbital Transport Imprint. Many Different Signatures Within The (Tens OF Thousands Of) Shapes Of This Expressed
Emplacement Allow Decoding Of Suborbital Transport. EL-AZ-VEL & Region Of Launch, AVEL/AEL Flow Velocity Gradient
During Ascent, Degree Of Volatile Surface Involvement And Total Energy May All Be Estimated. A Big Event Took Place...

EXPRESSED INFORMATION BANK
Velocity ”"VEL” Of ~3.5 km/s, VEL Variation (~1
part in 3000), And AVEL/AEL Velocity Elevation
Gradients) Of Launch Are Each Suggested By The
Six Bay Archetype Planform And Their Expressed
Regional Distributions. Right: A ~6 km Ovoid Is
Matched With The Blue Rim Of The B&W Dashed
Cintos.org Survey Perimeter [3,4] Beneath.
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~~~~~ Launch Long LONGITUDE

EMPLACED PRINCIPALS Shown At Left In Blue &
Above In Red & Black. At Launch Elevations Near Or
Above The “Knee” Of The Helix, The In-Track Principal
Extends Radically (Black) Vs. Below The Knee (Red).

GLOBAL EXAMPLE: For Strewn Distribution, Launch Solution Helices Of Each Fall Site May Be
Collated In KE-Space For Any Possible Launch Point A, And The Group Compared To Hyper-
velocity Test Results For Ejection Trends Matching Specific Test Conditions (i.e. Volatiles, etc.)
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