A ternary solid solution model of natural chlorites

Stephen Aja Brooklyn College of the City University of New York Brooklyn, NY

2015 Geological Society of America Annual Meeting

Structural formula of natural chlorites

Chlorite general formula

$$(R_{6-y-z}^{2+}R_y^{3+}\Box_z)_2(Si_{4-k}R_k^{3+})_2O_{20}(OH)_{16}$$

• Talc layer

$$(\mathbf{R}^{2+}_{6-y_2-z_2}\mathbf{R}^{3+}_{y_2}\square_{z_2})(\mathbf{Si}^{4+}_{4-k}\mathbf{R}^{3+}_k)\mathbf{0}_{20}(\mathbf{OH})_4$$

Brucite sheet

$$(\mathbf{R}_{6-y_1-z_1}^{2+}\mathbf{R}_{y_2}^{3+}\Box_{z_1})(\mathbf{0H})_{12}$$

Structural chemistry of chlorites used in study

Low-Fe clinochlore (Mg-Chl)

 $(Al_{2.64}Cr_{0.006}^{3+}Fe_{0.124}^{3+}Fe_{0.98}^{2+}Mg_{7.94}Ni_{0.018}\square_{0.292})(Si_{5.72}Al_{2.28})O_{20}(OH)_{16}$

Windsor Chlorite [Fe-Chl (W)]

 $(\mathrm{Al}_{2.96}\mathrm{Fe}_{0.666}^{3+}\mathrm{Fe}_{5.46}^{2+}\mathrm{Mg}_{2.38}\mathrm{Mn}_{0.052}\mathrm{Zn}_{0.014}\square_{0.468})(\mathrm{Si}_{5.24}\mathrm{Al}_{2.76})\mathrm{O}_{20}(\mathrm{OH})_{16}$

Michigan Chlorite [Fe-Chl(M)]

 $(Al_{2.80}Fe_{0.468}^{3+}Fe_{6.14}^{2+}Mg_{2.34}Mn_{0.036}\Box_{0.216})(Si_{5.72}Al_{2.28})O_{20}(OH)_{16}$

Experimental Studies

a. Solution equilibration studies (Aja & Dyar, 2002)
b. Rietveld structure refinement (Aja et al., 2015, *In press*)
c. Calorimetric measurements (Aja et al., 2015, *In press*)

Variation of S₂₉₈ as a function of mole fraction of Fe in some natural chlorites.

Trend of available S_{298} for natural non-stoichiometric chlorites render the accuracy of published S_{298} for clinochlore and chamosite questionable.

AJA (2015, GSA Annual Meeting)

11/4/2015

Endmember chlorite compositions commonly used in solid solution models

- Amesite
- Chamosite
- Clinochlore
- Al-free chlorite

Sudoite

 $(Mg_4Al_2)(Si_2Al_2)O_{10}(OH)_8$ $(Fe_5Al)(Si_3Al)O_{10}(OH)_8$ $(Mg_5Al)(Si_3Al)O_{10}(OH)_8$ $Mg_6Si_4O_{10}(OH)_8$ $(Mg_2Al_3\Box_1)(Si_3Al)O_{10}(OH)_8$

Excess entropy of chlorite solid solutions

$$S^{ex} = S_{real} - S_{ideal}$$

$$= S_{Chl,measured} - \left(\sum_{i} X_{i}S_{i}^{\circ} - R\sum_{i} X_{i}\ln X_{i}\right)$$

 $S_{Chl,measured}$ (or S_{real}) is the measured calorimetric entropy. S_i° and X_i are respectively the calorimetric entropy and mole fraction of the endmember components defining the solid solution. MJA (2015, GSA Annual Meeting)

Excess entropy of mixing (S^{ex}) in the chamosite – clinochlore pseudobinary system.

Mole fraction of Fe

- Blues dots: natural chlorites whose S₂₉₈ are known from calorimetry.
- S₂₉₈ for clinochlore and chamosite from Holland and Powell (1998).
- Sinusoidal trend unusual for silicates.
- Chamosite clinochlore join is apparently a pseudobinary solid solution.

Ternary models of chlorite solid solution

Al-rich chlorite solid solution (amesite –chamosite –clinochlore)

$$X_{\text{amesite}} = [A1^{\text{IV}}/O_{10}(\text{OH})_8 - 1]$$
$$X_{\text{chamosite}} = (X_{\text{Fe}})(1 - X_{\text{amesite}})$$
$$X_{\text{clinochlore}} = 1 - (X_{\text{amesite}} + X_{\text{chamosite}})$$

Al-poor chlorite solid solution (Al-free chlorite – chamosite –clinochlore)

$$\begin{split} X_{\text{Al-free chlorite}} &= [1 - \text{Al}^{\text{IV}}/\text{O}_{10}(\text{OH})_8] \\ X_{\text{chamosite}} &= (X_{\text{Fe}})(1 - X_{\text{Al-free chlorite}}) \\ X_{\text{clinochlore}} &= 1 - (X_{\text{Al-free chlorite}} + X_{\text{chamosite}}) \end{split}$$

Projection of some Fe-Mg chlorite compositions onto the ternary system

- Calorimetrically investigated chlorites
- Red squares: Aja et al. (2015)
- Solid circles (Hemingway et al., 1984; Bertoldi et al., 2007; Gailhanou et al., 2009)

Compositions of some natural Fe-Mg chlorites (Foster, 1962)

a) Foster (1962) chemography

b) Chamosite – clinochlore series

Projections of natural Fe-Mg chlorite compositions onto ternary systems (data from Foster, 1962)

b) Al-poor chlorites

Applicability of the ternary model of chlorite solid solution

The amesite-clinochlorechamosite compositional field (red lines) fully define the limits of chlorite alteration from the Phelps Dodge massive sulfide deposit (Quebec) as determined by Kranidiotis & MacLean (1987).

FIG. 9. Al-Fe-Mg plot of chlorite data (average compositions). The chlorite field is outlined by tielines to Al-rich and Al-poor minerals. Amesite and clinochlore are shown for reference. Abbreviations and symbols as in Figure 8. Rhyod = rhyodacite.

Adapted from Kranidiotis & Maclean (1987) Econ. Geol. 52, 1898-1911

AJA (2015, GSA Annual Meeting)

Excess entropy of mixing of natural chlorites in the amesite – chamosite –clinochlore system.

Mole fraction of clinochlore

Volume correlation of S^{ex}

 $\Delta \mathbf{S}^{\mathbf{ex}} = (\Delta \mathbf{V}_{\mathbf{i}} + \Delta \mathbf{K}_{\mathbf{i}}) \text{ [Benisek & Dachs, 2102]}$

 ΔV_i differences in molar volumes of endmember phases ΔK_i differences in compressibilities of endmember phases.

AJA (2015, GSA Annual Meeting)

Estimating effect of octahedral vacancy

Sudoite $(Mg_2AI_3\Box_1)(Si_3AI)O_{10}(OH)_8$ Chamosite $(Fe_5AI)(Si_3AI)O_{10}(OH)_8$ Clinochlore $(Mg_5AI)(Si_3AI)O_{10}(OH)_8$ Amesite $(Mg_4AI_2)(Si_2AI_2)O_{10}(OH)_8$

Mole fraction of clinochlore

Amesite-chamosite-clinochlore solid solution Xclinochlore = 1 – (Xamesite + Xchamosite) Amesite-chamosite-clinochlore-sudoite solid solution Xclinochlore = 1 – (Xamesite + Xchamosite + Xsudoite)

Configurational entropy effects on S^{ex}

Source of structural & calorimetric data (Aja et al., 2015, In press)

Conclusions

- S₂₉₈ of non-stoichiometric natural Fe-Mg chlorites appears linearly dependent on X_{Fe}.
- S^{ex} of molecular mixing of amesite-chamositeclinochlore, to yield equivalent compositions to investigated chlorites, display curvilinear trends consistent with entropy-volume correlations.
- S^{ex} of molecular mixing of chlorite endmembers are dominated by Fe-Mg exchange and Tschermak substitutions; the di-trioctahedral substitution (octahedral vacancy) has a marginal effect on S^{ex}.