A ternary solid solution model of natural chlorites

Stephen Aja
Brooklyn College of the City University of New York
Brooklyn, NY

2015 Geological Society of America Annual Meeting
Structural formula of natural chlorites

• Chlorite general formula

$\left(R_{6-y-z}^{2+}R_{y}^{3+}\square_{z}\right)_{2}\left(Si_{4-k}R_{k}^{3+}\right)_{2}O_{20}(OH)_{16}$

• Talc layer

$\left(R_{6-y_2-z_2}^{2+}R_{y_2}^{3+}\square_{z_2}\right)\left(Si_{4-k}^{4+}R_{k}^{3+}\right)O_{20}(OH)_{4}$

• Brucite sheet

$\left(R_{6-y_1-z_1}^{2+}R_{y_2}^{3+}\square_{z_1}\right)(OH)_{12}$
Structural chemistry of chlorites used in study

Low-Fe clinochlore (Mg-Chl)
\[(\text{Al}_{2.64}\text{Cr}^{3+}_{0.006}\text{Fe}^{3+}_{0.124}\text{Fe}^{2+}_{0.98}\text{Mg}_{7.94}\text{Ni}_{0.018\Box_{0.292}})(\text{Si}_{5.72}\text{Al}_{2.28})\text{O}_{20}(\text{OH})_{16}\]

Windsor Chlorite [Fe-Chl (W)]
\[(\text{Al}_{2.96}\text{Fe}^{3+}_{0.666}\text{Fe}^{2+}_{5.46}\text{Mg}_{2.38}\text{Mn}_{0.052}\text{Zn}_{0.014\Box_{0.468}})(\text{Si}_{5.24}\text{Al}_{2.76})\text{O}_{20}(\text{OH})_{16}\]

Michigan Chlorite [Fe-Chl(M)]
\[(\text{Al}_{2.80}\text{Fe}^{3+}_{0.468}\text{Fe}^{2+}_{6.14}\text{Mg}_{2.34}\text{Mn}_{0.036\Box_{0.216}})(\text{Si}_{5.72}\text{Al}_{2.28})\text{O}_{20}(\text{OH})_{16}\]

Experimental Studies
a. Solution equilibration studies (Aja & Dyar, 2002)
b. Rietveld structure refinement (Aja et al., 2015, In press)
c. Calorimetric measurements (Aja et al., 2015, In press)
Variation of S_{298} as a function of mole fraction of Fe in some natural chlorites.

Trend of available S_{298} for natural non-stoichiometric chlorites render the accuracy of published S_{298} for clinochlore and chamosite questionable.
Endmember chlorite compositions commonly used in solid solution models

Amesite: \((\text{Mg}_4\text{Al}_2)(\text{Si}_2\text{Al}_2)\text{O}_{10}(\text{OH})_8\)

Chamosite: \((\text{Fe}_5\text{Al})(\text{Si}_3\text{Al})\text{O}_{10}(\text{OH})_8\)

Clinochlore: \((\text{Mg}_5\text{Al})(\text{Si}_3\text{Al})\text{O}_{10}(\text{OH})_8\)

Al-free chlorite: \(\text{Mg}_6\text{Si}_4\text{O}_{10}(\text{OH})_8\)

Sudoite: \((\text{Mg}_2\text{Al}_{3\square\text{I}})(\text{Si}_3\text{Al})\text{O}_{10}(\text{OH})_8\)
Excess entropy of chlorite solid solutions

\[S^{\text{ex}} = S_{\text{real}} - S_{\text{ideal}} \]

\[= S_{\text{Chl,measured}} - \left(\sum_i X_i S_i^\circ - R \sum_i X_i \ln X_i \right) \]

\(S_{\text{Chl,measured}} \) (or \(S_{\text{real}} \)) is the measured calorimetric entropy.

\(S_i^\circ \) and \(X_i \) are respectively the calorimetric entropy and mole fraction of the endmember components defining the solid solution.
Excess entropy of mixing (S^{ex}) in the chamosite – clinochlore pseudobinary system.

- Blues dots: natural chlorites whose S_{298} are known from calorimetry.
- S_{298} for clinochlore and chamosite from Holland and Powell (1998).
- Sinusoidal trend unusual for silicates.
- Chamosite – clinochlore join is apparently a pseudobinary solid solution.
Ternary models of chlorite solid solution

Al-rich chlorite solid solution (amesite – chamosite – clinochlore)

\[X_{\text{amesite}} = \left[\text{Al}^{IV}/\text{O}_{10}(\text{OH})_8 - 1 \right] \]
\[X_{\text{chamosite}} = (X_{\text{Fe}})(1 - X_{\text{amesite}}) \]
\[X_{\text{clinochlore}} = 1 - (X_{\text{amesite}} + X_{\text{chamosite}}) \]

Al-poor chlorite solid solution (Al-free chlorite – chamosite – clinochlore)

\[X_{\text{Al-free chlorite}} = \left[1 - \text{Al}^{IV}/\text{O}_{10}(\text{OH})_8 \right] \]
\[X_{\text{chamosite}} = (X_{\text{Fe}})(1 - X_{\text{Al-free chlorite}}) \]
\[X_{\text{clinochlore}} = 1 - (X_{\text{Al-free chlorite}} + X_{\text{chamosite}}) \]
Projection of some Fe-Mg chlorite compositions onto the ternary system

- Calorimetrically investigated chlorites
- Red squares: Aja et al. (2015)
- Solid circles (Hemingway et al., 1984; Bertoldi et al., 2007; Gailhanou et al., 2009)
Compositions of some natural Fe-Mg chlorites (Foster, 1962)

a) Foster (1962) chemography

b) Chamosite – clinochlore series

Projections of natural Fe-Mg chlorite compositions onto ternary systems (data from Foster, 1962)

a) Al-rich chlorites

b) Al-poor chlorites
Applicability of the ternary model of chlorite solid solution

Adapted from Kranidiotis & Maclean (1987) Econ. Geol. 52, 1898-1911

The amesite-clinochlore-chamosite compositional field (red lines) fully define the limits of chlorite alteration from the Phelps Dodge massive sulfide deposit (Quebec) as determined by Kranidiotis & MacLean (1987).

Adapted from Kranidiotis & Maclean (1987) Econ. Geol. 52, 1898-1911

Excess entropy of mixing of natural chlorites in the amesite – chamosite – clinochlore system.

<table>
<thead>
<tr>
<th></th>
<th>HP1998</th>
<th>V2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorite</td>
<td>390.00</td>
<td>545.00</td>
</tr>
<tr>
<td>Amesite</td>
<td>403.20</td>
<td>559.40</td>
</tr>
<tr>
<td>Clinochlore</td>
<td>435.15</td>
<td>410.50</td>
</tr>
</tbody>
</table>

Calorimetric entropy (J/mol.K)
Volume correlation of S^ex

$$\Delta S^\text{ex} = (\Delta V_i + \Delta K_i) \ [\text{Benisek \& Dachs, 2102}]$$

ΔV_i differences in molar volumes of endmember phases
ΔK_i differences in compressibilities of endmember phases.
Estimating effect of octahedral vacancy

Amesite-chamosite-clinochlore solid solution

\[X_{\text{clinochlore}} = 1 - (X_{\text{amesite}} + X_{\text{chamosite}}) \]

Amesite-chamosite-clinochlore-sudoite solid solution

\[X_{\text{clinochlore}} = 1 - (X_{\text{amesite}} + X_{\text{chamosite}} + X_{\text{sudoite}}) \]
Configurational entropy effects on S^e_x

$$S^o = \int_0^{298.15} \frac{C_p}{T} dT + \Delta S_p + \Delta S_{\text{conf}}$$

$$S_{\text{conf}} = -R \sum_j m_j \sum_i X_{i,j} \ln X_{i,j}$$

ΔS_p attributed to magnetic spin ordering,
R is the gas constant,
m_j is the crystallographic multiplicity of atomic site j divided by the number of formula units per cell,
$X_{i,j}$ is the atomic fraction of species i on site j.

Source of structural & calorimetric data (Aja et al., 2015, In press)
Conclusions

• S_{298} of non-stoichiometric natural Fe-Mg chlorites appears linearly dependent on X_{Fe}.

• S^{ex} of molecular mixing of amesite-chamosite-clinochlore, to yield equivalent compositions to investigated chlorites, display curvilinear trends consistent with entropy-volume correlations.

• S^{ex} of molecular mixing of chlorite endmembers are dominated by Fe-Mg exchange and Tschermak substitutions; the di-trioctahedral substitution (octahedral vacancy) has a marginal effect on S^{ex}.