Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1.5 GPa and 800-1000°C

> Tim Peters and John C. Ayers Vanderbilt University



Funding by National Science Foundation EAR-0838391

VANDERBILT Earth and Environmental Sciences

#### Introduction: Zircon/Fluid Trace Element Partitioning

 For trace elements (that obey Henry's Law) the trace element partition coefficient

$$\mathsf{D} = \mathsf{C}_{\mathsf{s}}/\mathsf{C}_{\mathsf{fl}}$$

where  $C_s$  = concentration in the solid and  $C_{fl}$  = concentration in fluid.

- If we measure the concentration of a trace element in a zircon crystal, we can estimate the concentration that was in the fluid that the zircon crystal grew from:  $C_{fl} = C_s/D$
- Can trace element compositions of zircons be used to distinguish:
  - magmatic, metamorphic, and hydrothermal zircons?
  - different fluid compositions?
- Trace element partitioning equilibrium more likely in:
  - fluids than melts
  - fluids in which zircon is soluble: quartz-saturated acidic or alkaline fluids.

#### Zircon solubility $\uparrow$ with $\uparrow$ Si concentration



At 0.2 GPa and 600°C. From Ayers et al. (2012), GCA v. 96 pp. 18-28.

#### Zircon Solubility In Quartz-saturated Fluid



25°C and 1 bar pressure, thermodynamic data from Adair et al. (1997)

#### Experimental Approach: Starting Materials

- Finely powdered Mud Tank zircon with low trace element concentrations.
- Fluid quartz-saturated H<sub>2</sub>O ± HCl or NaOH doped with ~1000 ppm of trace elements.
- Small zircon crystals should recrystallize due to Kelvin effect and exchange trace elements with the fluid.
- Should be easy to distinguish recrystallized (high TE content) from unrecrystallized (low TE content).

#### Experiment setup



#### Experiment capsule

During the run.





### After experiment

- Collect quenched solutes, fuse and analyze to estimate fluid composition.
- Analyze solutes and run product zircon grains using LA-ICP-MS (ThermoFisher iCAP Qc quadrupole ICP-MS and Photon Machine Excite 193nm excimer laser ablation system)
- If solutes can't be collected, calculate fluid composition from mass balance using total concentration C<sub>t</sub> and run product zircon concentrations C<sub>s</sub>:

$$C_{t} = X_{fli}C_{fli} + X_{si}C_{si} \text{ where } X_{si} = M_{s}/(M_{s} + M_{fli})$$
  

$$C_{fl} = (C_{t} - X_{s}*C_{s})/X_{fl}$$
  

$$D = C_{s}/C_{fl}$$

#### **Recrystallization Experiments**

| Experiment | Fluid            | Temp (°C) |
|------------|------------------|-----------|
| ZrMT02     | H <sub>2</sub> O | 900       |
| ZrMT03     | H <sub>2</sub> O | 800       |
| ZrMT05     | H <sub>2</sub> O | 1000      |
| ZrMT07     | 1m NaOH          | 900       |
| ZrMT08     | 1m HCl           | 900       |

All fluids quartz-saturated. Experiment pressure = 1.5 GPa, duration = 168 h,  $fO_2$  = NNO.



#### ZrMT05 run product zircon







# ZrMT5 Zircon



#### Recrystallization Experiment Run Products



#### Zircon Trace Element Concentrations



Processed LA-ICP-MS data in Glitter, used "MDL unfiltered" values to calculate average concentrations in zircon. Ten analyses per sample, error bars ± 1 sigma.

#### D(zircon/fluid) values



Calculated by mass balance from bulk starting composition and concentrations in run product zircon crystals. Error bars  $\pm 1$  st. dev..

## Onuma diagram: D<sub>REE</sub> values



Are average  $C_s$  biased to low values and calculated  $C_{fl}$  to high values due to mixed analyses of recrystallized and unrecrystallized MT zircon, yielding minimum D values?

**Average D values** 

#### **Maximum Cs and D values**



#### Synthesis Experiments: ZrO<sub>2</sub> + SiO<sub>2</sub>

| Experiment | Fluid            | Time (h) | Temp (°C) |
|------------|------------------|----------|-----------|
| ZrTP11     | H <sub>2</sub> O | 168      | 800       |
| ZrTP13     | H <sub>2</sub> O | 72       | 800       |
| ZrTP14     | H <sub>2</sub> O | 24       | 800       |
| ZrTP34     | H <sub>2</sub> O | 96       | 900       |
| ZrTP35     | H <sub>2</sub> O | 96       | 900       |
| ZrTP40     | 1m NaOH          | 168      | 800       |
| ZrTP46     | 1m NaOH          | 72       | 800       |
| ZrTP49     | 1m NaOH          | 96       | 900       |
| ZrTP51     | 1m HCl           | 48       | 800       |
| ZrTP52     | 1m HCl           | 48       | 800       |
| ZrTP53     | 1m HCl           | 96       | 800       |
| ZrTP54     | 1m HCl           | 72       | 900       |



### Synthesis run products

D(zircon/fluid) values calculated using  $C_{fl}$  and  $C_t$  since impossible to get clean analyses of run product zircon



## Comparison: Synthesis and Recrystallization Experiments



# No systematic T dependence of D values in ZrMT experiments



# Hydrothermal, magmatic or metamorphic?



# D(zircon/fluid) for HFSE in recrystallization experiments

| lon                 | Avg. D | Median D |
|---------------------|--------|----------|
| Hf <sup>4+</sup>    | 12     | 9        |
| Th <sup>4+</sup>    | 0.8    | 0.7      |
| U <sup>6+</sup> (?) | 8.3    | 1.3      |
| Nb <sup>5+</sup>    | 0.15   | 0.12     |
| Ta <sup>5+</sup>    | 0.28   | 0.25     |

 $D_{\rm U}$  slightly higher than for HFSE other than Hf. Not enough to explain why hydrothermal zircons have high U?

### Conclusions

- Small zircon crystals recrystallize due to Kelvin effect. Large crystals form rims during coarsening.
- Zircon recrystallization promotes trace element partitioning equilibrium.
- Low trace element (REE) fractionation and lack of Ce and Eu anomalies likely due to contamination by fluid or LREE-rich phase, but may reflect disequilibrium.
- Analytical methods with spatial resolution higher than LA-ICP-MS needed to accurately measure zircon D values experimentally.
- Zircon is a tough nut to crack experimentally.