Session T2, GSA Annual Meeting 2015 at Baltimore

Diversity of the Kokchetav metamorphic diamonds and their formations related with H₂O-rich fluid conditions

Yoshihide Ogasawara Rentaro Shimizu & Kunihiko Sakamaki *Department of Earth Sciences Waseda University* E-mail: yoshi777@waseda.jp

Diamonds at Kumdy-kol, Kokchetav

Short summary of our previous studies

Dolomite marble

- Representative diamond-bearing rock in the Kokchetav
- Very high abundance (max. 2700 carat/ton)
- Two-stage growth:
 - 1st stage $\delta^{13}C = -15$ to -8 ‰, <u>2nd stage</u>: $\delta^{13}C = -27$ to -17 ‰
- 2nd stage diamond formed from C-bearing H₂O fluid
 - High nucleation rate
 - Quick crystallization

Grt-Bt gneiss

- high abundance
- No 2nd stage growth
- Growth and dissolution (?)

Calcite marble

- Very low abundance (61 grains only in Di)
- No 2nd stage growth
- Growth and dissolution (?)
- Small FWHM of Raman

Grt-Cpx rock (Dia-bearing)

- Low abundance
- Large-grain > 100 μm
 - Overgrowth on fine grain
 - Low nucleation rate
 - Slow crystallization from H₂O fluid

Tur-Qtz-Fel rock

- Dia in maruyamaite
- <u>No 2nd stage growth</u>
- Small FWHM of Raman

Two stage growth in dolomite marble

S-type: ca. 80% in dolomite marble

1st stage: core of S-type, R-type 2nd stage: rim of S-type, T-type

Scale bar: 10 micrometers

Two-stage growth of diamond

Carbon isotope of S-type microdiamond

4

sp² carbon in 2nd stage diamond

Relics of metastable intermediate C phase for diamond

After Miura & Ogasawara (2014) (AGU2014F V13B-4771)

in gneisses

10 µm

Abundant

0.5mm

Qtz

- But one order lower than in dolomite marble
- Variable morphologies

Zrn

- Granular, cubic, cubo-octahedral, spinel twin, etc.
- No 2nd stage growth
 - dissolution of diamond into H₂O fluid is possible.
- Host rock gneisses are possible H₂O source and the light C isotope source

b

Jtz

Bt

Diamonds in Grt-Bt gneiss

0

67

()

Diamond picture: courtesy of H.P. Schertl

Diamond in Grt-Cpx rock

100 µm

Minor amount
Extremely large-grained: > 100 μm
Find-grained Dia (new discovery: AGU2014F V13B-4779)
Cubic overgrowth on fine-grained
Low nucleation rate and slow growth
Fine-grained Dia: a seed crystal

Grt-Cpx rocks (Dia-bearing and Dia-free) Products of strong metasomatism of carbonate + silicate mixtures at UHP

Diamond-bearing

Diamond-free

First description: Sobolev & Shatsky (1990) Description: Sakamaki & Ogasawara. (2014: IGR V.55)

UHP evidence: Coesite exsolution from supersilicic titanite

Large-grained cubic diamond overgrowth on fine-grained one

Titanite-bearing Calcite marble

- Coesite exsolution in titanite Supersilicic titanite Min. P > 6 GPa Diopside with K-Fel Phe lamellae XCO₂ of titanite stability
 - \bigcirc extremely low (< 0.02)

no 2nd stage growth

Tur Microdiamonds in Tourmaline Qtz-Fel LOCK

Dia

Gr

New Prineral 九山電気石(K-tourmaline)

Gr

Contains diamonds No 2nd stage growth Meruyamaite: stable at UHP and under H₂O fluid

New mineral "maruyamaite" (K-dominant tourmaline domain includes diamond)

Evidence of H₂O fluid

Micro-FTIR spectra (OH) and H_2O in host garnet (OH) and H_2O in host Cpx H_2O in diamond (Grt-Cpx rock)

OH/H₂O in Grt in dolomite marble

OH/H₂O in Grt in Grt-Bt gneiss

Micro FT-IR spectra

OH/H₂O in Grt in Grt-Cpx rocks

Micro FT-IR spectra

Direct evidence for diamond formation in H₂O fluid

H₂O in diamond in Grt-Cpx rock

Micro FT-IR spectrum

Intraslab UHP metasomatism

(After Imamura et al., 2013; Ogasawara 2004; 2009; 2014)

Conclusions

- Kokchetav metamorphic diamonds show diverse features
 - in abundance, distributions in host minerals and host rocks
 - in morphology, Raman, CL and PL spectra, C isotope, etc..
- Formations of these diamonds are complicated, but some may be explained by H₂O-fluid infiltration in subducted continental materials.
- The presence of H_2O fluid was confirmed in host minerals as OH and H_2O , and in diamond in Grt-Cpx rock.
- Some of the diamonds crystallized from C-bearing H₂O fluid:
 - 2nd stage growth (T-type and core of S-type) in dolomite marble
 - O Cubic over growth (?) in Grt-Cpx rock
- Dissolution of diamond into H₂O fluid could be possible in some rocks without 2nd stage growth.
 - O Grt-Bt gneiss, UHP calcite marble

Thank you for your attentions!