

Effects of stratigraphic heterogeneity on upward migration of CO₂ in saturated porous media: Laboratory experiment and numerical simulation

Abstract

GCS (Geologic Carbon Sequestration) is considered as primary technique for reducing the greenhouse gas emission, particularly carbon dioxide. Many countries are developing their techniques for capture, storage, transportation as well as MMV (Measuring, Monitoring and Verification). In the view of MMV, early detection of CO_2 leakage is one of the main considerations. Before constructing the shallow subsurface monitoring system using sensors near the GCS site or the buried pipeline, it is important to choose monitoring point where leaked CO_2 might be passed. Naturally, subsurface media might have stratigraphic heterogeneity such as layer or lenses, and it has potential to affect the upward migration of CO₂.

To identify CO₂ leakage potential according to different stratigraphic heterogeneity, 2-D laboratory experiment was conducted using glass beads and transparent acrylic tank for visualization. The experiment conditions of embedded layer had seven different grain size ranges and each condition had slightly different physical properties such as capillary pressure and permeability. In homogeneous condition with which the layer has same grain size with background, the upward movement of CO₂ occurred all the way to the top surface. As difference of grain size between background and layer increases, upward migration through the layer gradually disappeared. The coarser layer had relatively lower capillary pressure and higher permeability compared to neighboring regions and it became a preferential flow path of CO₂. Whereas, the finer layer which had higher capillary pressure and lower permeability than background region acted as a barrier preventing from CO₂ rising. Numerical simulation using TOUGH2 was performed to generalize the previous experiment results and to apply more detailed conditions. The simulation results showed that not only the CO₂ saturation but also the position where the CO₂ plume accumulated were affected by the layer conditions.

These results of both laboratory experiment and numerical simulation suggest that the geological stratigraphic heterogeneities should be considered when selecting monitoring point to achieve the successful detection of CO₂ leakage.

Introduction

- One of the potential risks of geologic carbon sequestration (GCS) technology is the possibility of CO₂ to leak out to the shallow aquifer system and, eventually, to impact the groundwater quality.
- Implementation of a measurement, monitoring and verification (MMV) plan is essential for the sustainability of the GCS scheme (Rock et al 2014).
- Several cases related to failure for CO₂ leakage detection in artificial leakage experiment caused by the presence of heterogeneity are reported (Cahill and Jakobsen, 2013; Barrio et al., 2014).

* Objectives of this study

- Understand the basic information about the movement of gaseous CO₂ in the saturated porous medium.
- Characterization of the heterogeneity role on the migration of CO₂ in shallow aquifer system.

affected are	≥a ♥ ♥ ♥♥ ♥	well	unaffec	cted a
	Vadose	zone		
accum 2 10	ulation akage	accumulation		
Unconfined ac	luifer			
				gas e
Weathered ro	ock			

Fig. 1 Conceptual illustration of CO_2 leakage in a shallow aquifer

To study the effects of stratigraphic heterogeneity on gaseous CO₂ upward migration and flow pattern around the heterogeneous layer.

• Simulation time: total 800 sec (injection 300 + after stop 500)

• CO_2 injection rate: 7.664e-7 kg/sec (= 25 cm³/min)

material	Isotropic Permeability (k) [cm²]	Ratio of k	Porosity (φ) –	van Genuchten parameter				
				λ	S _{lr}	Sı	S _{gr}	α [m ⁻¹]
Background	2.31E-06	1.00	0.35	0.580	0.29	1.00	0.05	6.900E-4
Coarse layer*	3.80E-06	1.65	0.35	0.451	0.25	1.00	0.05	1.460E-3
Fine layer*	3.00E-07	7.70	0.35	0.697	0.32	1.00	0.05	3.679E-4

Summary and conclusion

- heterogeneity on gaseous CO₂ migration.
- The embedded fine layer acted as a capillary barrier on the upward migration of free CO₂ which migrated around the layer, and eventually left another place. The intercalated coarse layer became not only preferential path of free CO₂, but it also had high capacity
- of retaining gaseous CO_{2.}

Seung-Wook Ha · Byeong-Hak Park · Seongsun Lee · Hyun-Jung Kim · Kang-Kun Lee School of Earth and Environmental Sciences, Seoul National University, South Korea e-mail: hasabana@snu.ac.kr

• Laboratory experiments and numerical simulations were conducted to study the effects of stratigraphic

Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

No.117

References

Rock, L., Villegas, E.I., Becker, V., Dalkhaa, C., Humez, P., Nightingale, M., Shevalier, M., Mayer, B., Zhang, G. (2014) Investigation of natural tracers for MMV at the Quest Carbon Capture and Storage Project, Alberta, Canada, *Energy Procedia*

Cahill, A.G., Jakobsen, R. (2013) Hydro-geochemical impact of CO₂ leakage from geological storage on shallow potable aquifers: A field scale pilot experiment, International Journal of Greenhouse Gas Control

, Bakk, A., Grimstad, A., Querendez, E., Jones, D.G., Kuras, O., Gal, F, , Girad, J., Pezard, P., Depraz, L., Baudin, E., Børresen, M.H., Sønneland, L. (2014) CO₂ migration monitoring methodology in the shallow subsurface: Lessons learned from the CO₂FIELDLAB Project, *Energy Procedia*

Porter, M.L., Plampin, M., Pawar, R., Illangasekare, T. (2014) CO₂ leakage into shallow aquifers: Modeling CO₂ gas evolution and accumulation at interfaces of heterogeneity, *Energy Procedia*