Istituto di Ge®logia Ambientale e Ge®ingegneria

1-4 NOVEMBER GSA 2015 Baltimore, Maryland, USA

The response of living foraminiferal assemblages to hydrothermal vent influence: an example from the Pontine Archipelago (Tyrrhenian Sea, Italy)

Di Bella L. *, Virgilio Frezza*, Ingrassia M.*, **, Chiocci F.L. *, **, Martorelli E.**

 Dipartimento di Scienze della Terra, Sapienza Università di Roma, P.le A. Moro, 5, 00185, Roma;
 Istituto di Geologia Ambientale e Geoingegneria, CNR, UOS Roma, P.le A. Moro, 5, 00185, Roma.

Results

Zannone Giant Pockmark (ZGP):

Surface area: 0.5 km² Length: 900 m Width: 500 m Depth: 140-150 m wd Morphology: elongate shape, gently trending NNW–SSE. The ZGP can be interpreted as the result of the coalescence of wide crater features 200–500 m wide

The northern, central and the eastern sectors of the ZGP appear to be characterized by:

- small-scale cones and depressions of submetric and centimetric size (vertical relief less than 1–2 m and diameter ranging from 5 to 25 m)
- bubble streams concentrated in the northern sector
 - lithified pavements with white bacterial mats, generally not colonized by macrofauna

Geochemical analysis

 Gas chromatography analysis of the dissolved gases in water column samples collected <u>in the ZGP</u> reported values of <u>870 ppm of pCO₂, 2.76 ppm of pCH4 and 0.045 ppm of pC₂H₆.
</u>

 Water column samples collected <u>outside</u> the ZGP returned <u>500 ppm of pCO₂, 0.88 ppm of pCH₄ and not trace of C₂H₆.
</u>

#	Sample-depth	Не	H ₂	O ₂	N ₂	СО	CH ₄	CO ₂	He/Ne	R/Ra
1	BT3-2 50m		1,3x10 ⁻²	4,93	11,03	2,50E-05	7,1 x10 ⁻⁴	0,56	0,29	0,8
2	BT3-2 100m		1,6 x10 ⁻²	4,21	9,84	1,40E-05	9,4 x10 ⁻⁴	0,58	0,34	0,86
3	BT3-1 bottom	2,3 x10 ⁻⁴	7,0 x10 ⁻³	4,64	10,96	1,30E-05	1,8 x10 ⁻³	0,72	0,32	1,02
4	BT4-3 50m		2,4 x10 ⁻³	4,02	8,1	1,30E-05	9,2 x10 ⁻⁴	0,59	0,33	0,89
5	BT4-2 100m		4,7 x10 ⁻³	3,96	9,76	2,00E-05	1,4 x10 ⁻³	0,58	0,32	0,88
6	BT4-2 bottom		1,2 x10 ⁻³	3,66	7,99	2,00E-05	7,5 x10 ⁻⁴		0,34	0,94
7	BT6-3 50m		1,6 x10 ⁻³	4,44	10,76	3,00E-05	3,3 x10 ⁻⁴		0,33	0,85
8	BT6-2 100m	N	7,0 x10 ⁻³	4,41	10,84	1,80E-05	2,7 x10 ⁻⁴		0,24	0,83
9	BT6-1 bottom	18 3	1,5 x10 ⁻²	2,37	7,77	1,40E-05	8,1 x10 ⁻⁴	0,72	0,35	0,89
10	BT7-1 bottom	1. 200	1,9 x10 ⁻²	3,72	9,3	1,40E-05	4,9 x10 ⁻⁴	0,72	0,31	0,84
11	BT8-1 bottom	ANT	4,3 x10 ⁻³	4,22	10,23	2,30E-05	1,1 x10 ⁻⁴	0,53	0,32	0,85
ASSW		4.8 x10 ⁻⁵	and a Property of the	4.8	9.6	100	1.0 x10-6	0.24	State Carso	and the second

Grainsize analysis

				And Property of the		B.A.	100007012	
Cruise	Sample		Sand	Silt	Clay	(phi)	🛛 (phi)	D ₅₀ (mm)
Bolle2014	ST1BNR2	0	96,35	1,74	1,91	2,63	0,53	0,165
Bolle2014	ST2BNR1		96,65	2	1,35	1,92	1,09	0,205
Bolle2014	ST2BNRa		98,35	0,99	0,66	1,32	1,31	0,288
Bolle2014	ST3BNR3		87,92	6,61	5,47	2,73	1,70	0,161
Bolle2014	ST4BNR1		98,39	0,86	0,75	2,53	0,48	0,170
Bolle2014	ST5BNR1		88,56	7,01	4,43	2,02	-2,12	0,249
Bolle2014	ST6BNR1		88,73	7,25	-4,02	1,98	2,03	0,287
Bolle2014	ST6BNR3		86,36	8,28	5,36	2,22	- 2,10	0,220

The most part of the samples belongs to muddy sand unit

Microfauna

6 Stations: 4 inside ZGP and 2 outside ZGP at 120/140m wd. In each Station three replies were collected for a total of 18 grab samples

For each of the collected grab samples, small cores (10-15 cm thick) were analyzed and along them samples were collected continuously every 1 cm

The samples were stained and preserved in a solution of 2 g/l of Rose Bengal and ethanol. After 15 days, the samples were wetsieved through a 63 µm sieve and then dried at 40°C

Living and dead assemblages were analyzed. Faunal Density (ind/gr dry sed.), Diversity Index (Shannon H, Fisher alpha index)

Venting areas living Foraminiferal Assemblages

No venting areas Foraminiferal Assemblages

Living Assemblage: Lenticulina spp. Lobatula lobatula Quinqueloculina seminulum Spiculosiphon oceana Hyperammina spp.

- The most part of the washed residues is constituted of carbonatic organic fraction (mollusks, bryozoan, forams, ostracods...)
- Dead Foraminiferal assembalges are high diverified and more abundant than living assemblages.

Dead Assemblages: Cassidulina carinata Cassidulina crassa Asterigerinata mamilla Gavelinopsis lobatulus Lobatula lobatula Miliolids Textularia spp. Spiroplectinella wrightii

Conclusions

✓ In venting areas, active fluid emissions determines conditions enriched in carbon dioxide, methane and ethane which probably are a factor limiting the micro and macrofauna colonization and controll dissolution processes regarding calcareous test.

✓ Only agglutinated assemblage are present in the area under the vent influence.
 Faunal density, diversity and compositional features of the assemblages are controlled by different degree of stressed conditions.

✓ This study allow us to record peculiar assemblages never recorded in the Mediterranean Sea and increase knowledge about the ecological features of very uncommon species. Among these:

Deuterammina rotaliformis shows higher tolerance to high concentrations of carbon dioxid.

Reophax scorpiurus and **Spiculosiphon oceana** are the most abundant species in the intermediate and weaker fluid emissions and can be considered a successful colonizers of stressed environments.

Thanks for the attention

Acknowledgments

• Flagship Project RITMARE Crews of R/V Urania

• Senior Scientist Francesco Italiano INGV

Technologies and Health Dpt.
 Biomaterials and Contaminants Section
 ISS (Istituto Superiore di Sanità) - Rome Italy