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Objective

Objective: to better understand the historical progress in 
managing N, P, and SS exports from the Susquehanna River Basin 
(SRB) -- the largest tributary to Chesapeake Bay.

• Trend analysis: N, P, and SS loadings at seven sites.

• Mass-balance analysis: spatial budgets of major sub-basins, 
with focus on streamflow and land use effects on export. 



Approach Overview

At each site

• Monitoring data: 25-40 sampled days per year on average; 1980s-2013.

• WRTDS (“Weighted Regressions on Time, Discharge, and Season”, Hirsch 
et al., 2010) was run to estimate the daily true-condition and flow-
normalized loadings* for each constituent, i.e., SS, TP, TN, DP, and DN.  
[*“Loading” = riverine fluxes, unless otherwise stated.]

• Particulate nutrients: PP = TP – DP; PN = TN – DN.

• Annual loading / drainage area = annual riverine yield (kg km-2 yr-1).

For each sub-basin

• Riverine input load: flux entering the river reach = flux passing the 
monitoring site at the upstream limit of the river reach + flux entering 
from tributaries to that river reach (if any). [≠ Watershed source input!]

• Riverine output load: flux passing the site at the downstream limit of the 
river reach. 

• Net storage = riverine input loading – riverine output loading.



Trend Analysis: Flow-normalized Loads

Q1: What have been the general 
patterns of long-term trends in 

riverine nutrient/sediment loadings? 
In particular, have trends been 

consistent (a) across the monitoring 
locations and (b) between dissolved 

and particulate species?
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• Upstream declines: general declines at all sites upstream of the 
Conowingo Reservoir  indicating watershed-wide progress after 
decades of continued controls on various source inputs, including:

• WWTP upgrade since the 1980s (CBP, 1998), 
• P-detergent ban in PA in 1990 (Litke, 1999), 
• P-based nutrient management (Weld et al., 2002),
• PA’s Nutrient Management Act in 1993 and subsequent 

amendments for regulating CAOs/CAFOs (PA DEP, 2004),
• Co-benefit of Clean Air Act on NOx (Linker et al., 2013).

• Conowingo rises (SS, TP, PP, PN): primarily driven by decreased 
reservoir trapping capacity (Hirsch, 2012; Zhang et al., 2013) and 
possibly associated effects on biogeochemical transformations 
due to reduced residence time within the reservoir system.
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Changes in Source Inputs

Q2: What have been the general 
changes in watershed source inputs* 

and how have their magnitudes 
compared with those in riverine 

loadings?
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(*Based on input data from the Chesapeake Community Modeling Program, 
as provided by Gary Shenk, Guido Yactayo, and Gopal Bhatt.)



• TP total source input: declines at all sites except Newport, with the largest 
decline at Conestoga.

• Individual sources: negative Δ for 17 of 21 source-site combinations; 
dominated by manure and fertilizer reduction.

• FN riverine yield: negative Δ at all sites except Conowingo, with the largest 
decline at Conestoga.

Changes in TP Source Input (1987-2011) 2
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Changes in TN Source Input (1987-2011) 2

• TN total source input: declines at all sites, with the largest decline at Danville. 
• Individual sources: negative Δ for 25 of 28 source-site combinations; 

dominated by atm. deposition (AD) reduction at all sites except Conestoga. 
• FN riverine yield: negative Δ at all sites, with the largest decline at Conestoga.

Total Input



ΔFN-Yield vs. ΔInput (1987-2011) 2

• ΔFN-Yield/ΔInput > 0 (12 of 14 cases)  riverine yield has declined in response to 
reductions in watershed source input at different parts of the SRB.

• ΔFN-Yield/ΔInput < 1.0 (13 of 14 cases)  likely continual contribution from 
legacy surface and sub-surface stores, as observed elsewhere and recognized 
as “biogeochemical stationarity” (Basu et al., 2010; Thompson et al., 2011).



Mass-balance Analysis: Flow Effects

Q3: Which sub-basins have been net 
sources (or storages) of loadings and 

what have been the role of 
streamflow on constituent export?
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Sub-basins: Loading vs. Discharge Relationships 3

• SB1-SB6: concurrent peaks and troughs 
for Q and all constituents, showing a 
striking similarity with respect to the 
timing of significant export.

• Hypothesis: streamflow has been the 
principal factor controlling mass flux 
export in relative to other factors (e.g., 
biogeochemical processes).

• Validation: strong log-linear 
relationships (p-value < 0.01) between 
annual loading and annual discharge for 
all species at all sites (DN, DP, PN, PP not 
shown)  Streamflow is a strong 
predictor of rates of N/P/SS export. 

• Literature: consistent with studies on 
watersheds elsewhere (e.g., Alvarez-
Cobelas et al., 2008; Basu et al., 2010; 
Howarth et al., 2006). 



Sub-basins: Loading vs. Discharge Relationships 3

chemostatic effect 
mobilization effect 

• Implications: 

 exports not supply-limited; 

 large storages despite decades of management efforts; 

 “biogeochemical stationarity” (Basu et al., 2010).



Mass-balance Analysis: Land Use Effects

Q4: What have been the rankings of 
sub-basins with respect to 

nutrient/sediment yield and how 
have the rankings related to land use?
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• Streamflow: annual flow yield is almost 
invariable with land use.

• SS/TP/DP/PP/TN/DN/PN: annual constituent 
yields correlate positively with the area fraction 
of agricultural land and urban land but negatively 
with that of forested land (due to lower source 
inputs and/or higher assimilation capacity). 

• Flow classes: similar patterns observed with 
different flow classes (wet, dry, and average).

• Literature: consistent with findings discussed 
above and those on other watersheds (e.g., 
Harris, 2001; Jordan et al., 1997).

Effects of Land Use 4



Conclusions

• N, P, and SS loads have declined at all Susquehanna sites 
upstream of Conowingo Reservoir.

• Smaller annual reductions in riverine yield than source input 
imply contribution of legacy sources.

• Riverflow has been a principal factor controlling rates of 
constituent export.

• Dissolved and particulate species show chemostasis and 
mobilization effects, respectively.

• Long-term yields of all species correlate positively with the 
fraction of agricultural or urban area but negatively with that 
of forested land.

• The study illustrates the value of maintaining long-term 
water-quality monitoring at multiple locations in watersheds.
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