Ferrous Smectites and the Redox Evolution of Early Mars

Jeffrey G. Catalano
Ryan D. Nickerson

Washington University in St. Louis

Steven M. Chemtob

TEMPLE UNIVERSITY

Richard V. Morris

National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Acknowledgements

Facilities
- Advanced Photon Source, Argonne National Laboratory
- Institute for Materials Science and Engineering, Washington University
- Astromaterials Research and Exploration Science, Johnson Space Center

Financial Support
- NASA Mars Fundamental Research Program
- NASA Solar System Workings Program
- McDonnell Center for the Space Sciences
- Washington University
Ample Evidence of Widespread Surface Oxidation of Mars Today

- Ample mineralogical evidence shows that the surface of Mars today is oxidized
- Ferric iron-bearing minerals is the main signature surface redox conditions
 - Hematite, jarosite, nontronite are widely observed

Images from: Squyres et al. (2004) Science; Muchie et al. (2009) JGR
Early Earth was Anoxic until the Great Oxidation Event (GOE)

- Ample evidence for non-oxidizing conditions until ~2.35 Ga
 - Example: Detrital pyrite and uraninite deposited in fluvial sediments, Witwatersrand Basin

- Pre-GOE atmosphere dominated by N_2, CO_2, H_2O

When was the “Mars Oxidation Event”?

- Clear mineralogical and geomorphic evidence for substantial past water activity on Mars
- Preservation of indicators of past redox state is less certain
 - Continued oxidant deposition today
- *Timing of the oxidation of the Fe(II)-rich crust of Mars is unclear*
Importance of Clays in Exploring the Redox Evolution of Mars

- Much of the effort to understand the early history of Mars has focused on water availability
 - Water is essential for life
- Habitability also requires an energy source
 - On earth, the coupling of kinetically-slow redox reactions is the energy source for life
- Clays are important indicators of the past redox state of the near-surface Martian environment
 - Contain structural Fe that is redox-active
 - Earliest products of aqueous alteration

Image from: Ehlmann et al. (2011) *Nature*
Outstanding Questions in the Redox State of Clays on Early Mars

- What clays form during crustal alteration under anoxic conditions?
- What happens to these clays when they are later exposed to oxidants?
- Can the ferric clays observed today be oxidized remnants of the original phases that formed on early Mars?

Compositional range of terrestrial smectites

The box outlines the composition of smectites observed in unoxidized altered oceanic crust.
Thermodynamic Modeling Predicts Fe(II) Smectites as a Major Alteration Product Under Anoxic Conditions

- Modeling of basalt alteration demonstrates that Fe(II)/Mg saponites are the dominant weathering product except at high P_{CO_2}
- Oxidation of these assemblages produce nontronite [Fe(III)-smectite] and hematite
Experimental Hydrothermal Alteration of Basalt Produces Fe(II)-Bearing Trioctahedral Smectites

- Hydrothermal alteration of terrestrial basalts generate trioctahedral Fe(II)/Mg smectites (Fe:Al:Mg ~45:20:35)
 - Greater FeO content of Martian basalts would produce a smectite with more Fe and less Mg
- Alteration predominantly consumes olivine
Fe(II) smectites were synthesized to span the range of compositions observed in unoxidized altered oceanic crust.

XRD peak positions and VNIR metal-OH bands vary systematically with compositions.

- Fe(II) smectites have weaker reflectance spectral features than Mg smectites.

Chentob et al. (2015) JGR
X-ray absorption spectroscopy shows that H$_2$O$_2$ causes rapid, complete Fe oxidation

- About half of Fe is ejected from octahedral sheet, likely forming ferrihydrite nanoparticles
- 2:1 smectite structure is always maintained

Recrystallization produces an Fe(III)-smectite
Fate of Fe(II)-Smectites Upon Exposure to Molecular Oxygen: Initial Oxidation

- Exposure to dissolved O\textsubscript{2} for 1 week only partially oxidizes clay
 - Most of this oxidation occurs in 1 day
- Smectite structure preserved
 - Lattice parameter shifts and changes in VNIR reflectance spectra limited to high Fe clays
Recrystallization of Fe(II)-smectites relaxes the structure, allowing further oxidation.

Smectites with higher initial Fe(II) content show greater total oxidation.

- VNIR changes only seen in high-Fe clays
Relevance to Observations on Mars

Kaolinite Capping Fe/Mg Smectites in Nili Fossae

- Al-clay horizons overlying Fe/Mg smectite units may indicate anoxic leaching
 - Leaching at Deccan Traps produces abundant Fe oxides
 - Suggests distinct weathering pathway

- Gray drill cuttings from Sheepbed Mudstone suggest reduced Fe

Kaolinite Capping Fe/Mg Smectites in Nili Fossae

Possible Distinct Chemical Trend in Weathering in the Deccan Traps versus Nili Fossae

Earth and Planetary Sciences • Washington University
Comparison to and Assessment of Clays in the Sheepbed Mudstone

- Smectites observed by ChemMin at Gale Crater need not be oxidized to explain XRD features
- A mineral assemblage containing Fe sulfides and magnetite is in the Fe(II)-saponite stability field
 - Griffithite is not thermodynamically stable versus Fe(II)-saponite or nontronite
- The Sheepbed mudstone may have been formed under anoxic conditions

Chermob et al. (2015) JGR; Chermob et al., in preparation
Widespread Clay Formation on Mars May Predate Planetary Oxidation

- Anoxic alteration of basalt produces Fe(II)-smectites
- Mars surface experiences substantial oxidation today (H_2O_2 deposition, 0.14% O_2 in atm.)
 - Fe(II)-smectites cannot persist if exposed at the surface; Oxidize to Fe(III)-smectites
- Fe(III)-smectites observed today do not indicate oxidizing conditions in the past
 - Orbital and rover observations can be explained by anoxic conditions at time of deposition/alteration
- The past redox state of Mars cannot be assessed by examining surficial materials
 - Reflectance spectroscopy senses top few microns; Biased towards oxidized materials
- **An accurate geologic record of past conditions is likely only accessible in the subsurface**

_H$_2$O$_2$ Image from: Encrenаз et al. (2014) A&A_