Ferrous Smectites and the Redox Evolution of Early Mars

Richard V. Morris

National Aeronautics and Space Administration Lyndon B. Johnson Space Center

Acknowledgements

Facilities

Advanced Photon Source, Argonne National Laboratory
Institute for Materials Science and Engineering, Washington University
Astromaterials Research and Exploration Science, Johnson Space Center

Financial Support

NASA Mars Fundamental Research Program

NASA Solar System Workings Program

McDonnell Center for the Space Sciences

Washington University

Ample Evidence of Widespread Surface Oxidation of Mars Today

Hematite and Jarosite at Eagle Crater

Nontronite at Mawrth Vallis

- Ample mineralogical evidence shows that the surface of Mars today is oxidized
- Ferric iron-bearing minerals is the main signature surface redox conditions
 - Hematite, jarosite, nontronite are widely observed

Early Earth was Anoxic until the Great Oxidation Event (GOE)

- Ample evidence for non-oxidizing conditions until ~2.35 Ga
 - Example: Detrital pyrite and uraninite deposited in fluvial sediments, Witwatersrand Basin
- Pre-GOE atmosphere dominated by N₂, CO₂, H₂O

Images from: Lyons et al. (2014) *Nature*; Heinrich (2015) *Nature Geosci.*

Earth and Planetary Sciences • Washington University

When was the "Mars Oxidation Event"?

- Clear mineralogical and geomorphic evidence for substantial past water activity on Mars
- Preservation of indicators of past redox state is less certain
 - Continued oxidant deposition today
- Timing of the oxidation of the Fe(II)rich crust of Mars is unclear

Importance of Clays in Exploring the Redox Evolution of Mars

- Much of the effort to understand the early history of Mars has focused on water availability
 - Water is essential for life
- Habitability also requires an energy source
 - On earth, the coupling of kineticallyslow redox reactions is the energy source for life
- Clays are important indicators of the past redox state of the nearsurface Martian environment
 - Contain structural Fe that is redoxactive
 - Earliest products of aqueous alteration

Image from: Ehlmann et al. (2011) Nature

Earth and Planetary Sciences • Washington University

Outstanding Questions in the Redox State of Clays on Early Mars

- What clays form during crustal alteration under anoxic conditions?
- What happens to these clays when they are later exposed to oxidants?
- Can the ferric clays observed today be oxidized remnants of the original phases that formed on early Mars?

Compositional range of terrestrial smectites The box outlines the composition of smectites observed in unoxidized altered oceanic crust

Thermodynamic Modeling Predicts Fe(II) Smectites as a Major Alteration Product Under Anoxic Conditions

- Modeling of basalt alteration demonstrates that Fe(II)/Mg saponites are the dominant weathering product except at high P_{CO2}
- Oxidation of these assemblages produce nontronite [Fe(III)smectite] and hematite

Experimental Hydrothermal Alteration of Basalt Produces Fe(II)-Bearing Trioctahedral Smectites

- Hydrothermal alteration of terrestrial basalts generate trioctahedral Fe(II)/Mg smectites (Fe:AI:Mg ~45:20:35)
 - Greater FeO content of Martian basalts would produce a smectite with more Fe and less Mg
 - Alteration predominantly consumes olivine

Systematic Mineralogy and Spectral Properties of Fe(II) Smectites

- Fe(II) smectites were synthesized to span the range of compositions observed in unoxidized altered oceanic crust
- XRD peak positions and VNIR metal-OH bands vary systematically with compositions
 - Fe(II) smectites have weaker reflectance spectral features than Mg smectites

Fate of Fe(II)-Smectites Upon Exposure to Hydrogen Peroxide

Intensity

000

500

- X-ray absorption spectroscopy shows that H₂O₂ causes rapid, complete Fe oxidation
 - About half of Fe is ejected from octahedral sheet, likely forming ferrihydrite nanoparticles
 - 2:1 smectite structure is always maintained
 - Recrystallization produces an Fe(III)-smectite

Fate of Fe(II)-Smectites Upon Exposure to Molecular Oxygen: Initial Oxidation

- Exposure to dissolved O₂ for 1 week only partially oxidizes clay
 - Most of this oxidation occurs in 1 day
- Smectite structure preserved
 - Lattice parameter shifts and changes in VNIR reflectance spectra limited to high Fe clays

Fate of Fe(II)-Smectites Upon Exposure to Molecular Oxygen: Aging Effects

- Recrystallization of Fe(II)-smectite relaxes the structure, allowing further oxidation
- Smectites with higher initial Fe(II) content show greater total oxidation
 - VNIR changes only seen in high-Fe clays

Relevance to Observations on Mars

Kaolinite Capping Fe/Mg Smectites in Nili Fossae

Possible Distinct Chemical Trend in Weathering in the Deccan Traps versus Nili Fossae

Images from: Ehlmann et al. (2009) *JGR*; NASA After: Greenberger et al. (2012) *JGR*

Grey Sheepbed Drill Cuttings

- Al-clay horizons overlying Fe/Mg smectite units may indicate anoxic leaching
 - Leaching at Deccan Traps produces abundant Fe oxides
 - Suggests distinct weathering pathway
- Gray drill cuttings from Sheepbed Mudstone suggest reduced Fe

Comparison to and Assessment of Clays in the Sheepbed Mudstone

- Smectites observed by ChemMin at Gale Crater need not be oxidized to explain XRD features
- A mineral assemblage containing Fe sulfides and magnetite is in the Fe(II)saponite stability field
 - Griffithite is not thermodynamically stable versus Fe(II)-saponite or nontronite
 - The Sheepbed mudstone may have been formed under anoxic conditions

Chemtob et al. (2015) *JGR;* Chemtob et al., in preparation

Earth and Planetary Sciences • Washington University

Widespread Clay Formation on Mars May Predate Planetary Oxidation

- Anoxic alteration of basalt produces Fe(II)smectites
- Mars surface experiences substantial oxidation today (H₂O₂ deposition, 0.14% O₂ in atm.)
 - Fe(II)-smectites cannot persists if exposed at the surface; Oxidize to Fe(III)-smectites
- Fe(III)-smectites observed today do not indicate oxidizing conditions in the past
 - Orbital and rover observations can be explained by anoxic conditions at time of deposition/alteration
- The past redox state of Mars cannot be assessed by examining surficial materials
 - Reflectance spectroscopy senses top few microns; Biased towards oxidized materials
- An accurate geologic record of past conditions is likely only accessible in the subsurface

H2O2 mixing ratio (ppbv)

Ferric Clays on Surface

Ferrous Clays in Subsurface?