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Background image: Looking east out of the Hartford Cave entrance, Rum Cay, Bahamas

ABSTRACT:. Coastal and island karst as a subfield of general karst studies
became established in the 1980s with the development of the flank margin model
to explain caves in coastal and inland carbonate cliffs that had phreatic
dissolutional surfaces, lacked epigenic forms, and were not wave action or tafoni
In origin. Two decades of examination of localities world-wide generated two
Important additional concepts: 1) there is a significant difference between karst on
Islands, which Is karst typical of that seen In interior continental settings, and
Island karst, which invokes the interaction of freshwater-seawater mixing and sea-
level change to produce unique karst features; and 2) the Carbonate Island Karst
Model (CIKM), which takes into account the diagenetic condition of the carbonate
rock, and its distribution relative to insoluble rocks, if present. Continental
carbonate coasts, such as Yucatan, became part of the model. The role of organic
loading and decay, and discharge flow velocity, were characterized. A final
| significant development was that flank margin caves were seen to develop rapidly,
within a few thousand years, but to persist under proper conditions, for millions of
| years. Coastal karren’s unigue morphologies were seen to be an outcome of
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|gure 4: Flank margin caves, at the wall scale (left) and at the cave
scale (rlght) have a unlque pattern of connected globular chambers
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| Many unanswered questions remain. The role of tidal forcing on flow dynamics | ALLOGENIC RECHARGE R - opENEDQRETREAT

| and geochemistry in flank margin caves has not been fully explained. As the | AUTOGENIC == _ R MAX
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nature of the flow, including vertical density convection, remains a topic of
debate. An international meeting in 2014 failed to reach a consensus as to
whether flank margin caves were hypogene or not. Two hydrological questions:
the role of island size, and continental coastal discharge regimes, have had initial
Investigation, but more needs to be done. Initial study as to what actually
happens at the wall-rock and fluid interface has been inconclusive. The nature of

- - + +
+ + + + +

+ + NON-CARBONATE + + +

ROCK

CARBONATE
ROCK

CARBONATE
ROCK

MAXIMUM CLIFF
WIDTH = RETREAT % ¢
ENTRANCE CONTINUES N

WIDTH

ENTRANCE WIDTH meters

Figure 5: Metrics involving entrance and interior dimensions help determine
the degree of cave breaching, and hence the rate of denudation.
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contaminant transport and residence time in coastal karst remains a frontier. NON-CARBONATE ROCKS A BAMAMAS (ALL CAVES) B BAHAMAS (SWALL GAVES)
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from early work was to differentiate between karst
on islands, typical of any karst area, and island
karst, unique to carbonates in coastal settings.
The left image iIs mogotes on Puerto Rico, not
unique to island settings; the right image is a
series of flank margin caves, Rum Cay, Bahamas,
unique to coastal carbonate settings.
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Figure 1. The initial new model for carbonate island and coastal karst was the
flank margin cave model, which explained these caves as the result of mixed
water dissolution, decay of organics, and discharge concentration under a
laminar flow regime. The model first appeared in 1988 (Mylroie, 1988; 1990).
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Figure 7: Area vs Perimeter plots
show that flank margin caves grow
large by aligning to the lens margin

Figure 6: Bahamian caves self select
Into different size categories, which
represent chamber intersections.
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Figure 8: Continental carbonate coasts, such as in Quintana Roo,
Mexico, behave as a large island and have over 1,000 km of
surveyed cave produced by the interaction of conduit flow with
mixing dissolution. Cave passage (left), cenote (right).

Figure 12: Flank margin caves, due to their origin at the
lens and land boundary, are vulnerable to exposure by

Background Image: Breached flank margin cave erosion and overprinting by marine processes;

o oy tch. C B differentiating such hybrid caves can be difficult. Flank
a a reS' ua cas a nO ch, yan rac. margin cave breached by wave erosion (left), wave

e et e B e e e e A R e LY s | action attacking coastal cliff (right), on Barbados.
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Flgure 13: The actual geochemical activity at
the chamber-wall rock boundary is not well s
understood. While the process is extremely "i:

powerful, it seems restrlcted to a narrow front. :':\
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