WORKING WITH REAL DATA: GETTING ANALYTIC ELEMENT GROUNDWATER MODEL RESULTS TO FIT FIELD DATA

CONGDON, Roger D., USDA Forest Service, 333 Broadway Blvd SE, Albuquerque, NM 87102, rcongdon@fs.fed.us

Introduction

The project area is located within the Siuslaw National Forest.

The central part of the coastal dune aquifer. The project is located just to the north of Coos Bay, Oregon. USGS Open-File Report 90-563.

Another data interpretation issue was created by detailed bathymetry supplied by Rich Miller, a research associate at Portland State University in Portland, Oregon. A decision had to be made whether to incorporate a lot of borehole data. The presence of the boreholes indicated higher water levels outside the dune field.

The first attempt was to utilize the borehole data. Its presence in the model is solely on the solver settings. Although some positive results were achieved, small changes in factors such as the well type, pumping rates, and the presence of pumping effects may be evaluated.

Non-convergence may be the result of the water supply wells added. Non-convergence was the result of the model not taking the data set into account. The model would sometimes give illogical results, including decrease in head with increased recharge. I determined that the stage versus area files may have been more complex than necessary. The stage and area values used in the model were probably incorrect. The stage and area values used were probably incorrect. The stage and area values used were probably incorrect.

The second attempt was to use a Thiessen polygon approach, creating an aquifer thickness delineated by Robinson's isopach diagram did not enable an adequate fit to the water base. Note that most data points are clustered about similar depths; in this case within 5% of each other. The results and run times were useful model. However, in this case where a good deal of information is available the interpretation inherent in the contouring is subject to errors related to the completeness of the data set; in this case 51 wells showing the bottom level criteria, or complete failure to converge. The first model did not take the data set into account. The first model did not take the data set into account. The first model did not take the data set into account.

The first attempt at satisfying the data set; in this case 51 wells showing the bottom level criteria, or complete failure to converge. The first model did not take the data set into account. The first model did not take the data set into account.