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/Objective \

Evaluate the feasibility of visible derivative spectroscopy for high-spatial resolution of mineralogical variations within rock core by
using a case study of the Point Pleasant Formation in SW Ohio.

Visible derivative spectroscopy is a non-destructive method that can be used in combination with traditional techniques to give insight
into mineral assemblages and how they vary with depth and amongst several sets of cores.

Visible derivative spectroscopy has been proven effective on individual minerals [1,2,3], sediment cores [4,5,6], and remote sensing
of surface materials [7,8]. Some rock core analysis has been completed with success [9,10]. We provide visible derivative
spectroscopy data, its processing technique, and verification with gXRD for three cores of the Point Pleasant Formation. Here, the
Point Pleasant Formation refers to both the Point Pleasant and Utica Shale.
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Visible derivative spectroscopy using a Minolta cm2600d was measured on three sets of cores at 1 cm resolution down core. Varimax
Rotated Principal Component Analysis was performed using SPSS on each core dataset, extracting mineral assemblages and down
core variations.

Quantitative XRD was measured on 30 samples taken from two sets of cores (the third core was not able to be sampled). One gram
of sample was mixed with 0.25 g of corundum and milled in a McCrone Micronizing mill with 4 ml ethanol and zirconia grinding
elements.

XRD was performed in side loading holders on a Scintag X-1. Results were then analyzed using USGS RockJock software. QXRD
was used to validate the reflectance results by comparing the Component Scores to the Z-Scores of the gXRD ([%Value-
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/>Absorption patterns depend on the mineralogy because the varying elements in minerals have varying orbital configurations and \
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Visible Derivative Spectroscopy

bonds, exhibiting different reflectance derivative spectra in [11]. The Konica-Minolta UV/VIS CM2600d spectrophotometer measures
from 360-740 nm at 10 nm intervals and a 3 mm measurement spot. The Minolta has its own independent light sources - 3 pulsed
xenon lamps. This keeps the measurements independent of environmental effects (variable lighting sources).

Center weighted first derivatives are typically used when interpreting visible spectroscopy data to emphasize the spectra shape [4]
and to minimize matrix effects such as grain size and moisture content (Figure 1)[11]. This allows for easier interpretation and
correlation amongst rock spectra and known mineral spectra.

correlation between sample spectrum and mineral spectra.

Qure 1.Examples of the first derivative of the visible spectra of Albite, Dolomite, Calcite, Goethite and Hematite (400-700 nm) to illustrate the differences in spectra. Pearson’s Correlation Coefficient is used to calculatey

VPCA

» Principal Component Analysis with Varimax-rotation (VPCA), similar to R-mode component analysis, was used on the visible

>

>

derivative spectroscopy datasets.

Component analysis is a statistical sorting technique used on large, multivariate datasets to identify a much smaller number of dimensions (components
or components) that explain the majority of the variance/characteristics within a dataset [12].

VPCA seeks to decompose a data matrix into independent (orthogonal) components by finding the largest variances within a dataset (Figure 2). It is the
same as solving a system of linear equations for eigenvalues and eigenvectors. For each extracted component, the eigenvectors are the direction of
maximum variance in a dataset, and the eigenvalue indicates how much variance there is in that direction. The eigenvectors are also called component
loadings, and describes the weight a variable has on the extracted component. Component loadings can be thought of as “data-adaptive filters”.
Component loadings are then projected back onto the dataset to obtain component scores, which represent the weight of the extracted component on
a particular data point. Many datasets are then rotated because it puts emphasize on fewer variables for each extracted component, and each variable
preferably only correlates to one component, thus making the model easier to interpret (Figure 3). Varimax is commonly used because it minimizes the

number of variables that have high loadings within a component, enhancing the interpretability of the extracted loadings [6,11,12,13].
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Here, our matrix consists of visible derivative spectroscopy spectra (columns) with depth (rows) taken on rock cores. The component
loadings represent the weight of a variable (particular wavelength) on an extracted component. The component loadings can be used
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Core 2984

» Core 2984 consists of ~140 ft (~43 m) of core, encompassing the boundary between the overlying Kope Formation and the
Point Pleasant Formation. Three components were extracted, explaining 91.4% of the variance within the dataset. Component
1 Loadings correlate with lllite (R=-0.972) (Figure 4). Component 2 Loadings explain the bright, highly reflective minerals
within the cores: calcite, dolomite and gypsum (R=0.897) (Figure 5). Component 2 Scores also highly correlate with L*, which
IS the lightness of the surface (R=0.796). Component 3 Loadings correlate with the iron oxides within the core, a mixture of
goethite+hematite (R=0.950) (Figure 6).

» Z-Scores of the gXRD values were then plotted against the Component Scores 1 and 2 (Figures 7 and 8) and values
generally correlate with the Component Scores.

» The down core variation for Component Score 3 (Figure 9) has little variation down core (the iron oxides generally comprise of
just a few wt percent or trace amounts within a sample), but the boundary between the Kope Formation and Point Pleasant has
previously been documented as an unconformity with hematite coatings. This is represented as the large spike in Component
Score 3 at 522 ft depth.
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Figure 6. Component 3 Loadings vs.
Goethite+Hematite.

because the reflectance spectra do not
have 100% correlation. Some minerals
are able to be estimated from
reflectance (see [4,15,16]) with
additional information and calibration

between the Kope and PP, and has
been noted previously to have localized
iron rich layer at the boundary [17].

to help identify mineral spectra by comparison to known mineral standards obtained by lab measurements or the USGS Spectroscopy
library. The component scores represent the down core variability of an interpreted mineral (assemblage).

Core 3003

» Core 3003 is located in Eastern Ohio, within the “sweet spot” for hydrocarbon production. Two components were extracted
that again matches the other two studied cores. Component 1 Loadings correspond Calcite+Dolomite (R=0.925) (Figure
9), and Component 2 Loadings correspond to the clay content (lllite; R=0.977) (Figure 10).

» Down core variations are not presented because of large missing sections of core and previously inconsistent handling
practices.

» The results indicate that the three cores, although very different in appearance, contain similar mineralogy. The differences
in the detected mineralogy can give insight into the different processes that occurred within different locations of the
Sebree Trough.
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Mineralogy of the Point Pleasant Formation within the Sebree Trough, SW Ohio, using
Visible Derivative Spectroscopy Spectroscopy and XRD

Core 2982

» Core 2982 consists of ~140 ft (~43 m) of core, encompassing the boundary between the overlying Kope Formation and the Point
Pleasant Formation. Two components were extracted, explaining 93.9% of the variance. Component 1 Loadings correspond to
lllite+Chlorite (R=-0.980) (Figure 11). Component 2 Loadings correspond to the bright, highly reflective minerals within the core

(Dolomite+Calcite+Gypsum; R=0.906) (Figure 12). Component
(brightness) values (R=0.827).

» Z-Scores of the gXRD values were then plotted against the Component Scores 1 and 2 (Figures 13 and 14) and values

generally correlate with the Component Scores.
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Geologic History and Visible derivative
spectroscopy Implications

» The Sebree Trough is a bathymetric low filled with interbedded
shales and carbonates (Utica Shale, Point Pleasant formation in
Ohio) during the Middle-Upper Ordovician that extends from
Tennessee, Kentucky, lllinois, through SW Ohio (Figure 15)[17].

» During this time, Laurentia was located at the equator and an
epeiric sea covered the North American continent from the
highlands of the Taconic Orogen to the east and
Transcontinental Arch and Canadian Shield islands towards the
west[17,18].

» Shallow water carbonates were deposited on the Lexington and
Trenton Carbonate Platforms while the trough filled with
siliciclastics from the Taconic Highlands. Biostratigraphy and K-
Bentonite deposits place the deposition of the silicliclastics that
fill the trough coeval with the platforms [17,18].

» Results from the Visible derivative spectroscopy indicate that
Core 2984 has a greater influence from carbonate, and appears
to have generally thicker carbonate beds compared to Core
2982. Core 2982 has more interbedding of clays and
carbonates.

» This is consistent with the general locations of the core

compared to the Sebree Trough. Core 2984 is supposed to be §:
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Figure 15. Generalized cross section showing the relationship of the Galena (Trenton) Platform,
Utica Shale filled Sebree Trough (also the Point Pleasant Fmt below in Ohio) and the Lexington
Platform. The Sebree Trough Fill intertounges the Lexington Platform, while there is little
interbedding between the Trenton Platform and Sebree Trough Fill. P indicates liocalized phosphors
and iron mineral surfaces. Stars are the locations of the cores. Image from [17].
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