
VPCA
 Principal Component Analysis with Varimax-rotation (VPCA), similar to R-mode component analysis, was used on the visible 

derivative spectroscopy datasets. 
 Component analysis is a statistical sorting technique used on large, multivariate datasets to identify a much smaller number of dimensions (components 

or components) that explain the majority of the variance/characteristics within a dataset [12]. 
 VPCA seeks to decompose a data matrix into independent (orthogonal) components by finding the largest variances within a dataset (Figure 2). It is the 

same as solving a system of linear equations for eigenvalues and eigenvectors. For each extracted component,  the eigenvectors are the direction of 
maximum variance in a dataset, and the eigenvalue indicates how much variance there is in that direction. The eigenvectors are also called component 
loadings, and describes the weight a variable has on the extracted component. Component loadings can be thought of as “data-adaptive filters”. 
Component loadings are then projected back onto the dataset to obtain component scores, which represent the weight of the extracted component on 
a particular data point. Many datasets are then rotated because it puts emphasize on fewer variables for each extracted component, and each variable 
preferably only correlates to one component, thus making the model easier to interpret (Figure 3). Varimax is commonly used because it minimizes the 
number of variables that have high loadings within a component, enhancing the interpretability of the extracted loadings [6,11,12,13].

 Here, our matrix consists of visible derivative spectroscopy  spectra (columns) with depth (rows) taken on rock cores. The component 
loadings represent the weight of a variable (particular wavelength) on an extracted component. The component loadings can be used 
to help identify mineral spectra by comparison to known mineral standards obtained by lab measurements or the USGS Spectroscopy 
library. The component scores represent the down core variability of an interpreted mineral (assemblage).
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Objective
 Evaluate the feasibility of visible derivative spectroscopy for high-spatial resolution of mineralogical variations within rock core by 

using a case study of the Point Pleasant Formation in SW Ohio. 
 Visible derivative spectroscopy is a non-destructive method that can be used in combination with traditional techniques to give insight 

into mineral assemblages and how they vary with depth and amongst several sets of cores.
 Visible derivative spectroscopy has been proven effective on individual minerals [1,2,3], sediment cores [4,5,6], and remote sensing 

of surface materials [7,8]. Some rock core analysis has been completed with success [9,10]. We provide visible derivative 
spectroscopy data, its processing technique, and verification with qXRD for three cores of the Point Pleasant Formation. Here, the 
Point Pleasant Formation refers to both the Point Pleasant and Utica Shale.

Methods
 Visible derivative spectroscopy using a Minolta cm2600d was measured on three sets of cores at 1 cm resolution down core. Varimax

Rotated Principal Component Analysis was performed using SPSS on each core dataset, extracting mineral assemblages and down 
core variations.

 Quantitative XRD was measured on 30 samples taken from two sets of cores (the third core was not able to be sampled). One gram 
of sample was mixed with 0.25 g of corundum and milled in a McCrone Micronizing mill with 4 ml ethanol and zirconia grinding 
elements.

 XRD was performed in side loading holders on a Scintag X-1. Results were then analyzed using USGS RockJock software. QXRD 
was used to validate the reflectance results by comparing the Component Scores to the Z-Scores of the qXRD ([%Value-
%mean]/St.Dev).

Core 3003

Figure 1.Examples of the first derivative of the visible spectra of Albite, Dolomite, Calcite, Goethite and Hematite (400-700 nm) to illustrate the differences in spectra. Pearson’s Correlation Coefficient is used to calculate the 
correlation between sample spectrum and mineral spectra.

Visible Derivative Spectroscopy
 Absorption patterns depend on the mineralogy because the varying elements in minerals have varying orbital configurations and

bonds, exhibiting different reflectance derivative spectra in [11]. The Konica-Minolta UV/VIS CM2600d spectrophotometer measures
from 360-740 nm at 10 nm intervals and a 3 mm measurement spot. The Minolta has its own independent light sources - 3 pulsed 
xenon lamps. This keeps the measurements independent of environmental effects (variable lighting sources).  

 Center weighted first derivatives are typically used when interpreting visible spectroscopy  data to emphasize the spectra shape [4] 
and to minimize matrix effects such as grain size and moisture content (Figure 1)[11]. This allows for easier interpretation and 
correlation amongst rock spectra and known mineral spectra.

Geologic History and Visible derivative 
spectroscopy  Implications
 The Sebree Trough is a bathymetric low filled with interbedded 

shales and carbonates (Utica Shale, Point Pleasant formation in 
Ohio) during the Middle-Upper Ordovician that extends from 
Tennessee, Kentucky, Illinois, through SW Ohio (Figure 15)[17].

 During this time, Laurentia was located at the equator and an 
epeiric sea covered the North American continent from the 
highlands of the Taconic Orogen to the east and 
Transcontinental Arch and Canadian Shield islands towards the 
west[17,18]. 

 Shallow water carbonates were deposited on the Lexington and 
Trenton Carbonate Platforms while the trough filled with 
siliciclastics from the Taconic Highlands. Biostratigraphy and K-
Bentonite deposits place the deposition of the silicliclastics that 
fill the trough coeval with the platforms [17,18].

 Results from the Visible derivative spectroscopy  indicate that 
Core 2984 has a greater influence from carbonate, and appears 
to have generally thicker carbonate beds compared to Core 
2982. Core 2982 has more interbedding of clays and 
carbonates. 

 This is consistent with the general locations of the core 
compared to the Sebree Trough. Core 2984 is supposed to be 
on the SE side of the trough, intertounging the Lexington 
Platform, with a greater influence from the platform, while Core 
2982 is located directly within the trough, with periodic 
carbonate deposits but most influence from the shedding of 
siliciclastics from the Taconic Orogeny. 

Figure 15. Generalized cross section showing the relationship of the Galena (Trenton) Platform, 
Utica Shale filled Sebree Trough (also the Point Pleasant Fmt below in Ohio) and the Lexington 
Platform. The Sebree Trough Fill intertounges the Lexington Platform, while there is little 
interbedding between the Trenton Platform and Sebree Trough Fill. P indicates liocalized phosphors 
and iron mineral surfaces. Stars are the locations of the cores. Image from [17].
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Core 2984

Core 2982

 Core 2984 consists of ~140 ft (~43 m) of core, encompassing the boundary between the overlying Kope Formation and the 
Point Pleasant Formation. Three components were extracted, explaining 91.4% of the variance within the dataset. Component 
1 Loadings correlate with Illite (R=-0.972) (Figure 4). Component 2 Loadings explain the bright, highly reflective minerals 
within the cores: calcite, dolomite and gypsum (R=0.897) (Figure 5).  Component 2 Scores also highly correlate with L*, which 
is the lightness of the surface (R=0.796). Component 3 Loadings correlate with the iron oxides within the core, a mixture of 
goethite+hematite (R=0.950) (Figure 6). 

 Z-Scores of the qXRD values were then plotted against the Component Scores 1 and 2 (Figures 7 and 8) and values 
generally correlate with the Component Scores. 

 The down core variation for Component Score 3 (Figure 9) has little variation down core (the iron oxides generally comprise of 
just a few wt percent or trace amounts within a sample), but the boundary between the Kope Formation and Point Pleasant has 
previously been documented as an unconformity with hematite coatings. This is represented as the large spike in Component 
Score 3 at 522 ft depth. 

Figure 7. Component Score 1 vs. depth 
compared to corresponding mineral Z-
Scores calculated from qXRD results. 

The qXRD values generally correspond 
with the Component Scores, but a 
perfect correlation is not expected 

because the reflectance spectra do not 
have 100% correlation. Some minerals 

are able to be estimated from 
reflectance (see [4,15,16])  with 

additional information and calibration

 Core 2982 consists of ~140 ft (~43 m) of core, encompassing the boundary between the overlying Kope Formation and the Point 
Pleasant Formation. Two components were extracted, explaining 93.9% of the variance. Component 1 Loadings correspond to 
Illite+Chlorite (R=-0.980) (Figure 11). Component 2 Loadings correspond to the bright, highly reflective minerals within the core 
(Dolomite+Calcite+Gypsum; R=0.906) (Figure 12). Component Scores for Component 2 also highly correspond to the L* 
(brightness) values (R=0.827). 

 Z-Scores of the qXRD values were then plotted against the Component Scores 1 and 2 (Figures 13 and 14) and values 
generally correlate with the Component Scores.

 Core 3003 is located in Eastern Ohio, within the “sweet spot” for hydrocarbon production. Two components were extracted 
that again matches the other two studied cores. Component 1 Loadings correspond Calcite+Dolomite (R=0.925) (Figure 
9), and Component 2 Loadings correspond to the clay content (Illite; R=0.977) (Figure 10). 

 Down core variations are not presented because of large missing sections of core and previously inconsistent handling 
practices.

 The results indicate that the three cores, although very different in appearance, contain similar mineralogy. The differences
in the detected mineralogy can give insight into the different processes that occurred within different locations of the 
Sebree Trough. 

Figure 2. VPCA identifies 
the largest amount of 
variance within a dataset, 
and identifies these as 
Components. These 
components are then 
interpreted based upon the 
given data. Modified from 
[14].

Eigenvector 1
(largest amount of variance)

Eigenvector 2
(second largest variance)

Figure 3. Rotating the data 
makes the results easier to 
interpret by aligning the 
axes in the x & y directions. 
This can flip the signs of the 
solution (+/-), but the results 
will still lend insight into the 
causes of the variance. 
From [14].

Figure 4. Component 1 Loadings vs. 
Illite. 

Figure 5. Component 2 Loadings vs. 
Dolomite+Calcite+Gypsum

Figure 6. Component 3 Loadings vs. 
Goethite+Hematite.

Images of cores and corresponding locations. 
Generally, as the clay content increases, there is 

an increase in FS1 (A & B).  As the carbonate 
content increase, there is a decrease in FS1, and a 

corresponding increase in FS 2 (C). There are 
times of moderate calcite content (thin laminations) 

within the shale, and the corresponding shifts in 
FS1 and FS 2 are observed (D).
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Figure 11. Component 1 Loadings 
vs. Illite+Chlorite.

Figure 12. Component 2 Loadings 
vs. Dolomite+Calcite+Gypsum.

Figure 13. Down core 
Component Score 1 
with corresponding 

Illite+Chlorite Z-Scores 
from qXRD analysis.

Figure 8. Component Score 2 
vs. depth compared to 

corresponding mineral Z-Scores 
calculated from qXRD results. 

Figure 9. Component Score 3 vs. depth 
compared to corresponding mineral Z-
Scores calculated from qXRD results. 
At ~522 ft, a high component score is 
present, indicating a large influence 
from the mineral assemblage (here, 
goethite+hematite). This locations 

roughly corresponds to the boundary 
between the Kope and PP, and has 

been noted previously to have localized 
iron rich layer at the boundary [17]. 

Figure 9. Component 1 Loadings vs. 
Calcite+Dolomite. 

Figure 10. Component 2 
Loadings vs Illite. Although 
down core variations are 
unreliable, the Visible derivative 
spectroscopy  gives similar 
mineralogy compared to the 
other two sets of cores. 

Figure 14. Down 
core Component 

Score 2 with 
corresponding 

Carbonate Z-Scores 
from qXRD anlaysis. 
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