NGSS Aligned Data-Rich Learning Materials for the Next Generation Scientists

Shelley E. Olds, UNAVCO, Inc. Boulder, Education and Community Engagement, Boulder, CO, United States

Lessons & Modules

Tectonic Setting
- As a suite, the educational materials cover the major tectonic settings
- Free to educators & public
- Middle & High-school students are engaged in the practice of science
- Data-rich: providing experiences with scientific practices and cross-cutting concepts
- Includes GPS data from the EarthScope Plate Boundary Observatory plus additional data
- Place-based and geographically relevant

Alignment Matrix: Coverage & Gaps
- Coverage in this suite of resources draws on strengths of available data. As lessons and modules become more complex, additional NGSS alignment occurs.
- Gaps (absence of an X) highlight areas to focus with future resources. Connecting to high quality resources is a priority.

About the Table

Tectonic Setting
- Measuring Plate Motion with GPS
 - How does GPS work to pinpoint a location on Earth?
 - What can GPS tell us about Iceland?
 - Extent: Exploring East Africa plus basin & range in Western United States
 - Apply your knowledge

Transform Boundaries
- Exploring Plate Motion and Deformation in California with GPS
 - Analyze GPS time series data
 - Investigate deformation - what happened
 - Extensions: Explore more GPS data

Convergent Boundaries
- Detecting Cascadia's Changing Shape (Module)
 - Cascadia tectonic setting
 - Deformation & strain
 - Earthquakes
 - Tsunamis

Hot Spots
- Taking the Pulse of Yellowstone's "Breathing" Volcano: Problem-Based Learning in America's First National Park (Module)
 - Monitoring volcanic activity
 - Jigsaw:
 - Eruptive history
 - Seismic activity
 - Hydrothermal activity
 - Using GPS to view how Yellowstone is inflating & deflating over time
 - Analysis, Decision Making, Presentation

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring Plate Motion with GPS</td>
<td>Iceland, East Africa, Basin & Range</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Exploring Plate Motion and Deformation in California with GPS</td>
<td>California</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Detecting Cascadia's Changing Shape (Module)</td>
<td>Oregon, Washington, N. California</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Taking the Pulse of Yellowstone's "Breathing" Volcano: Problem-Based Learning in America's First National Park (Module)</td>
<td>Yellowstone, Snake River Basin</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas
- **ESS1.C: The History of Planet Earth**
 - Understanding the geological timeline
 - Plate tectonics and Earth's dynamic systems

Crosscutting Concepts
- **1. Patterns:**
 - **2. Cause and effect:**
 - **3. Systems and system models:**
 - **4. Energy and matter:**
 - **5. Structure and function:**

Science and Engineering Practices
- **1. Asking questions (for science) and defining problems (for engineering):**
 - **2. Developing and using models:**
 - **3. Planning and carrying out investigations:**
 - **4. Analyzing and interpreting data:**
 - **5. Constructing explanations and designing solutions:**
 - **6. Obtaining, evaluating, and communicating information:**
 - **7. Engaging in argument from evidence:**

Science and Engineering Practices
- **1. Asking questions (for science) and defining problems (for engineering):**
 - **2. Developing and using models:**
 - **3. Planning and carrying out investigations:**
 - **4. Analyzing and interpreting data:**
 - **5. Constructing explanations and designing solutions:**
 - **6. Obtaining, evaluating, and communicating information:**
 - **7. Engaging in argument from evidence:**

- **Standards:**
 - **1. Asking questions (for science) and defining problems (for engineering):**
 - **2. Developing and using models:**
 - **3. Planning and carrying out investigations:**
 - **4. Analyzing and interpreting data:**
 - **5. Constructing explanations (for science):**
 - **6. Constructing explanations (for engineering):**
 - **7. Engaging in argument from evidence:**

- **Data-rich: providing experiences with scientific practices and cross-cutting concepts

References and acknowledgements
This work is based on materials provided by the UNAVCO Education and Community Engagement Program with support from the National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) under NSF Award EAR-1261833.

Special thanks to Kathleen Alexander and Nancy West to align UNAVCO materials with NGSS.