Analyzing Daily Variability in *E. coli* Concentrations in an Urban Stream

Caroline Tuttle1, Julianna Crumlish2, Michael Canty2, Thomas J. Glose2, and Christopher S. Lowry2

1 Department of Environmental Studies, Skidmore College, Saratoga Springs, NY 2 Department of Geology University at Buffalo, Buffalo, NY

Introduction

A critical issue in urban streams is increased levels of *E. coli* due to anthropogenic sources. In the city of Buffalo, NY, these sources are due to an aging waste water infrastructure, which has a combined storm water and sewer system. One creek that is heavily impacted by increased *E. coli* due to combined-sewer overflows is Scajaquada Creek. In 1921, as development in the city increased, Scajaquada Creek was diverted underground. The creek now flows in a tunnel under Buffalo for four miles and then emerges again in Forest Lawn Cemetery. In this experiment, our goal was to determine the sources of *E. coli*, and mechanisms which might account for variability in *E. coli* within Forest Lawn Cemetery. Potential variability in these concentrations were thought to have come from photo degradation and dilution. These potential drivers were investigated over a 24 hour sampling period at locations with variable contributions of sun light and tributary sources of water.

Methodology

Water samples were collected in Forest Lawn Cemetery along a 2-mile stretch of Scajaquada Creek, with background sampling conducted over four month period (May – Aug 2015). Fine scale sampling was taken every two hours over a 24 hour period. Escherichia coli (*E.coli*) water samples were taken in five different locations along the stream. After the samples were taken, ColiArt was added to the samples, and the samples were placed in a Quanti-Trap for quantification of *E.coli* and fecal coliforms (ISO standard 9308-2:2012). Samples were incubated for 24 hours at 35°C. After 24 hours samples were placed under a florescent light; the cells that glowed were considered to have *E.coli*.

Results

External Sources of Water Entering Stream

Diel concentrations within Scajaquada Creek were thought to have come from photo degradation and dilution. *E. coli* concentrations in the main channel. These results may partially explain the lower levels of *E. coli* further down the stream. Results from the 24 hour sampling show small diel fluctuation in *E. coli* concentrations only at the downstream sampling locations (D and E).

Spatial Distribution of *E. coli*

Average levels of *E. coli* decrease moving downstream from the outlet of the culvert, indicating the source of *E. coli* is likely coming from inside the culvert. Levels of *E. coli* in tributary pipes and drains entering Scajaquada Creek were found to have lower concentrations, indicating that the water from these openings may dilute the *E. coli* concentrations in the main channel. These results may partially explain the lower levels of *E. coli* further down the stream. Results from the 24 hour sampling show small diel fluctuation in *E. coli* concentrations only at the downstream sampling locations. These diel trends support the idea of limited photo degradation, which resulted in a change of 800 MPN/100ml change in concentrations at the lower site (Site E). This photo degradation is superimposed on the dilution signal resulting in the observed reduction in *E. coli* along the stream reach.

Conclusions

Acknowledgements

Funding for this work came from the New York State Water Resource Institute and the cooperation of Forest Lawn Cemetery and the Buffalo Niagara Riverkeeper. In addition to the assistance of Chelsea Kanaley, Sarah Gonzalez, Rafael Santos, and Nicholas Luh.

References

ColiArt Quant-tray and presence/absence methods for total coliforms and Escherichia Coli- Appendix C3- Ohio Water Microbiology Laboratory (data collection sheet form).