Culture Testing for a Dual-Biofilm Reactive Barrier for Treatment of Chlorinated Benzenes in Wetland Groundwater and Sediment

Michelle M. Lorah
Jessica Teunis
USGS, Baltimore, Maryland

Denise M. Akob
Darren Dunlap
USGS, Reston, Virginia

in cooperation with
USEPA, Region III and
NIEHS (National Institute of Environmental Health Sciences)
Background

- Chemical plant 1966-2002; EPA Superfund site since 2002
- USGS wetland study with EPA since 2009 to characterize wetland and evaluate bioremediation
- NIEHS research study started Oct 2014 in collaboration with JHU and Geosyntec
Biodegradation Pathways

Anaerobic (reductive dechlorination)
- CB serves as terminal electron acceptor
- Separate e- donor required
- Rate decreases with decreasing number of Cl

Aerobic (oxidation)
- O₂ required as electron acceptor
- CBs utilized as C and e- donor
- Rate increases with decreasing number of Cl
- Short-lived intermediates

Drinking Water MCL µg/L

* Parent contaminant
Conceptual model for contamination and dual-biofilm reactive barrier in wetland
Anaerobic Culture WBC-2

- Enriched from wetland sediment at APG to degrade chlorinated ethanes and ethenes
- Sediment-free culture since 2002
- Readily available in large quantities

Aerobic Culture 15B

- Wetland groundwater from DP-15B at SCD
- Tryptone-yeast extract media
- Fed with CB, 12DCB, 14DCB, and 124TCB
- Incubated aerobically on shaker
Methods: GAC Seeding

- Treatments in duplicate
- 10 g of GAC (Calgon Carbon Corp. Filtrasorb 600-Unsorted) for each
- 10 mL of media or culture in media
- Soaked GAC for 3 days for seeding (anaerobic glove box for WBC-2)
- DNA extracted and frozen until genetic analysis

Anaerobic

- WBC-2 Media only
- WBC-2 in media + GAC
- WBC-2 in media + GAC + TeCA

Aerobic

- Groundwater filter samples from 15B
- 15B Media only
- 15B in media + GAC
Workflow for Characterizing Microbial Communities

1. Extract DNA
2. Amplify 16S rRNA gene
 - Gold standard taxonomic gene for microbiology
3. Characterize community composition—diversity, abundance, & identity of organisms
4. Illumina iTag Sequencing

Microbial Community

Illumina iTag Sequencing (magic box)
GAC with WBC-2: Classes >1% Abundance

- Bacilli
- Actinobacteria
- Mollicutes
- Bacteroidia
- Thermotogae
- Gammaproteobacteria
- Betaproteobacteria
- Deltaproteobacteria
- Synergistia
- Clostridia
- Dehalococcoidetes
- Anaerolineae
- Chloroflexi
GAC with WBC-2: Chloroflexi, Order

- Significant increase in Dehalococcoidales on GAC.
- Decrease in Anaerolineales on GAC.
GAC with WBC-2: Genus

1. **Anaerolineae**
 - f__Anaerolinaceae;Other
 - f__Anaerolinaceae;g__C1_B004
 - f__Anaerolinaceae;g__T78
 - f__Anaerolinaceae;g__WCHB1-05

2. **Dehalococcoidetes**
 - f__Dehalococcoidaceae;g__Dehalococcoides
 - f__Dehalococcoidaceae;g__Dehalogenimonas

3. **Deltaproteobacteria**
 - f__Geobacteraceae;Other
 - f__Geobacteraceae;g__
 - f__Geobacteraceae;g__Geobacter

Genus T78 and Dehalococcoides were predominant in both the culture and the WBC-2-seeded GAC.
GAC with 15B: Classes >1% Abundance

Relative Abundance (%)

GW.1 GW.2 15B.1 15B.2 +GAC.1 +GAC.2

- Sphingobacteria
- Bacilli
- Actinobacteria
- Gammaproteobacteria
- Betaproteobacteria
- Alphaproteobacteria
• **Significant increase in the Betaproteobacteria group Burkholderiales on GAC.**
• **Moderate decrease in the Alphaproteobacteria group Rhizobiales on GAC; greater decrease in Caulobacterales.**
GAC with 15B: Proteobacteria, Genus

1. Alphaproteobacteria (Orders Caulobacterales, Rhizobiales)
 - f__Caulobacteraceae;Other
 - f__Caulobacteraceae;g__Brevundimonas
 - f__Brucellaceae;g__Ochrobactrum
 - f__Phyllobacteriaceae;Other
 - f__Phyllobacteriaceae;g__
 - f__Rhizobiaceae;Other
 - f__Rhizobiaceae;g__
 - o__Rhizobiales;Other;Other

2. Betaproteobacteria (Order Burkholderiales)
 - f__Alcaligenaceae;Other
 - f__Alcaligenaceae;g__
 - f__Comamonadaceae;g__Comamonas

3. Gammaproteobacteria
 - f__Pseudomonadaceae;g__Pseudomonas
 - f__Xanthomonadaceae;g__Stenotrophomonas

cited by others, i.e. Vogt et al., 2002, “Two Pilot Plant Reactors Designed for the In Situ Bioremediation of Chlorobenzene-contaminated Ground Water...”
15B Isolate 16S rRNA Identification
(Spiked with mixture of 124TCB, 14DCB, 12DCB, CB)

<table>
<thead>
<tr>
<th>Isolate Name</th>
<th>Isolated From</th>
<th>Top GenBank BlastN Hit</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>15B-YJ-3</td>
<td>Full 15B in 10% media</td>
<td>Pseudomonas genticula</td>
<td>1724</td>
</tr>
<tr>
<td>15B-YJ-1</td>
<td>10% media plate isolate, directly from plate</td>
<td>Pseudomonas genticula</td>
<td>1818</td>
</tr>
<tr>
<td>15B-YJ-5</td>
<td>10% media plate isolate transferred to liquid media</td>
<td>Pseudomonas genticula</td>
<td>1724</td>
</tr>
<tr>
<td>15B-YJ-6</td>
<td>10% media plate isolate transferred to liquid media</td>
<td>Pseudomonas genticula</td>
<td>1740</td>
</tr>
<tr>
<td>15B-YJ-2</td>
<td>1% media plate isolate, directly from plate</td>
<td>Pseudomonas genticula</td>
<td>1803</td>
</tr>
<tr>
<td>YJ-15B-1</td>
<td>100% media plate isolate with DNAPL CBs</td>
<td>Pseudomonas aeruginosa</td>
<td>2217</td>
</tr>
<tr>
<td>YJ-15B-2</td>
<td>100% media plate isolate with DNAPL CBs</td>
<td>Pseudomonas aeruginosa</td>
<td>2584</td>
</tr>
<tr>
<td>YJ-15B-3</td>
<td>100% media plate isolate with DNAPL CBs</td>
<td>Pseudomonas aeruginosa</td>
<td>2547</td>
</tr>
</tbody>
</table>
Microcosm Results: Aerobic 15B Seeded on GAC

- Distinct decrease in CBs with culture in mineral media compared to DIW
- Delay in sorption to GAC with aerobic biofilm
- Slightly faster overall CB removal in biofilm-GAC
Microcosm Results:
Anaerobic WBC-2 Biofilm on GAC

- Slight decrease in CBs with culture in mineral media compared to DIW Rapid sorption to GAC with and without anaerobic biofilm
- Distinctly faster overall CB removal in biofilm-GAC
Conclusions

- GAC provides an effective growth matrix for the anaerobic WBC-2 and aerobic 15B cultures
- GAC enhanced the abundance of microbial groups/species involved in biodegradation; thus a good delivery and support matrix for the cultures
 - Dehalococcoides significantly increased (~doubled) in WBC-2 seeded GAC
 - Burkholderiales group doubled in 15B seeded GAC
 - Pseudomodales in 15B-seeded GAC community
- Biodegradation occurred in conjunction with sorption by GAC seeded with the cultures
Acknowledgements

USGS MD-DE-DC
- Site characterization
- Feasibility evaluation
- Technology development
- Pilot test remediation

Fate and Bioremediation Team
- Dr. Michelle Lorah
- Jessica Teunis
- Mastin Mount
- Michael Brayton
- Dr. Charles Walker
- Roberto Cruz
- Emily Majcher
- Anna Baker
- Luke Myers
- NRP Collaborators:
 - Dr. Isabelle Cozzarelli
 - Dr. Denise Akob

Johns Hopkins University
- Dr. Ed Bouwer
 - Steven Chow, PhD student

Geosyntec Consultants
- Dr. Neal Durant
- Dr. Amar Wadhawan

NIH National Institute of Environmental Health Sciences

- R01 Program – Strengthens Remediation and Detection Mandates
 - Biogeochemical Interactions Affecting Bioavailability for in situ Remediation of Hazardous Substances (R01)

- **DETECTION and MONITORING**
 - bioavailability measures

- **REMEDICATION** – using biogeochem for effective remediation design

- **RISK:** Identify Factors in Uptake
- **HEALTH:** Reduced Exposure

United States Environmental Protection Agency
Questions?