

Retrofitting stormwater retention on headwater streets: hydrologic effects of catchment-scale green infrastructure

Anne JeffersonKimberly JardenJerKent State UniversityCler

Jennifer Grieser Cleveland Metroparks

#GSA2015

Green infrastructure (aka low impact development, distributed stormwater management, source control)

Goal: disconnect impervious surfaces from sewer or stream to maintain pre-development hydrograph and water balance Retrofitting stormwater controls

Already urbanized watersheds may require distributed approaches.

Parma, Ohio: Fully developed since 1950s

How effectively can green infrastructure mitigate urban stormflow?

- What effects do street scale green infrastructure investments including, rain gardens, street side bioretention, and rain barrels have on peak and total stormflows?
- What are the human dimensions of the story?

Jarden, Jefferson, and Grieser. In press. Assessing the effects of catchment-scale green infrastructure retrofits on hydrograph characteristics. Hydrological Processes, doi: 10.1002/hyp.10736.

Klusner Ave. 55.5% impervious

37 Rain Barrels7 Rain Gardens16 Bioretention

12.5% homeowner participation

Parma, Ohio West Creek (tributary to Cuyahoga) 35% impervious

--- Treatment

Control Marda Dr

West Creek Control

Treatment

Parkhaven Dr. 26.4% impervious

21 Rain Barrels3 Rain Gardens7 Bioretention

32.2% homeowner participation

Parkhaven Dr – Mazepa Trail 📲

Klusner Ave – Hetzel Dr

GI substantially reduced total stormflow.

Figure 4

Jarden, Jefferson, and Grieser. *In press.* Assessing the effects of catchment-scale green infrastructure retrofits on hydrograph characteristics. *Hydrological Processes, doi: 10.1002/hvp.10736.*

Why is Phase 2 so much better? No Underdrains

Jarden, K.M., Jefferson, A., and Grieser, J.M. in press. Assessing the effects of catchment-scale green infrastructure retrofits on hydrograph characteristics, *Hydrological Processes, doi: 10.1002/hyp.10736.*

Slight design & construction differences matter.

Phase 1

Lag Time Analysis Shows Value of Underdrained GI

Centroid lag-to-peak

- Time from the centroid of precipitation to the peak of discharge (T_{LPC})
- Compare Control to Treatment Street: C_{LPC} - T_{LPC}
- 0 if streets peak at same time
- Adding GI with underdrains slowed down flow. Adding GI without underdrains didn't.

Jarden, K.M., Jefferson, A., and Grieser, J.M. in press. Assessing the effects of catchment-scale green infrastructure retrofits on hydrograph characteristics, *Hydrological Processes, doi: 10.1002/hyp.10736.*

Lower TI, higher GI street

Did road repairs offset the effect of the GI? Or did the GI not work?

Jarden, K.M., Jefferson, A., and Grieser, J.M. in press. Assessing the effects of catchment-scale green infrastructure retrofits on hydrograph characteristics, *Hydrological Processes, doi: 10.1002/hyp.10736.*

Scaling up to a (bigger) watershed

- 0.1% of watershed affected by this \$300,000 project.
- 12 30% homeowner participation, even with incentives.
- Resident opinions sharply divided.
- Open question about long term performance.

How effectively can green infrastructure mitigate urban stormflow?

 Reductions in stormflow volumes & peak flows can be significant for street-scale green infrastructure retrofits. Need to achieve big hydrologic changes at street-scale <u>and</u> apply over large areas to see watershed-scale effects.

Real barriers to green infrastructure effectiveness may be humans.